简介概要

Properties of Functionalized Graphene/Room Temperature Vulcanized Silicone Rubber Composites Prepared by an In-situ Reduction Method

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2013年第1期

论文作者:马文石 LI Ji DENG Bangjun LIN Xiaodan ZHAO Xusheng

文章页码:127 - 131

摘    要:Functionalized graphene oxide (FGO) was prepared by treating graphene oxide with γ-aminopropyl triethoxysilane (KH-550) before the mixture was dispersed into α, ω-dihydroxy polydimethylsiloxane to get room temperature vulcanized (RTV) silicone rubber composites by solution casting. The cured composites were then reduced with hydrazine hydrate to obtain functionalized graphene (FG)/RTV silicone rubber composites. The structures of FGO and the resultant composites were characterized by atomic force microscopy, FT-IR spectra and X-ray diffraction. KH-550 was found to be grafted onto graphene sheets, leading to an increased interlayer spacing. Significant improvements in thermal and mechanical properties were obtained. Both the FGO/RTV silicone rubber composite contain 1.0 wt% of FGO, and its reduced product showed an increase of one-step weight loss temperature with 61 ℃ and 133 ℃ higher than that of pure silicone rubber. Tensile strength and elongation at break of FG/RTV silicone rubber composite (with 0.5 wt% FGO content) increased by 175% and 67%, respectively, compared with those of pure silicone rubber.

详情信息展示

Properties of Functionalized Graphene/Room Temperature Vulcanized Silicone Rubber Composites Prepared by an In-situ Reduction Method

马文石1,LI Ji1,DENG Bangjun1,LIN Xiaodan1,ZHAO Xusheng2

1. College of Materials Science and Engineering, South China University of Technology2. Guangzhou Institute of Chemistry, Chinese Academy of Sciences

摘 要:Functionalized graphene oxide (FGO) was prepared by treating graphene oxide with γ-aminopropyl triethoxysilane (KH-550) before the mixture was dispersed into α, ω-dihydroxy polydimethylsiloxane to get room temperature vulcanized (RTV) silicone rubber composites by solution casting. The cured composites were then reduced with hydrazine hydrate to obtain functionalized graphene (FG)/RTV silicone rubber composites. The structures of FGO and the resultant composites were characterized by atomic force microscopy, FT-IR spectra and X-ray diffraction. KH-550 was found to be grafted onto graphene sheets, leading to an increased interlayer spacing. Significant improvements in thermal and mechanical properties were obtained. Both the FGO/RTV silicone rubber composite contain 1.0 wt% of FGO, and its reduced product showed an increase of one-step weight loss temperature with 61 ℃ and 133 ℃ higher than that of pure silicone rubber. Tensile strength and elongation at break of FG/RTV silicone rubber composite (with 0.5 wt% FGO content) increased by 175% and 67%, respectively, compared with those of pure silicone rubber.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号