应用基于人工神经网络建立的新型物理图形预测Al-Zn-Mg-Cu合金固溶过程的组织演变

来源期刊:中国有色金属学报(英文版)2015年第3期

论文作者:刘蛟蛟 李红英 李德望 武 岳

文章页码:944 - 953

关键词:铝合金;固溶处理;电阻率;人工神经网络;显微组织演变

Key words:aluminum alloy; solution treatment; electrical resistivity; artificial neural network; microstructure evolution

摘    要:采用原位电阻测试法、金相显微镜观察、扫描电镜观察、透射电镜观察和拉伸测试技术研究固溶条件对Al-Zn-Mg-Cu合金显微组织和拉伸性能的影响。基于实验数据建立人工神经网络模型,将该模型用于预测实验合金在固溶过程中的电阻率变化。结果表明,所建立的模型能很好地预测合金在固溶过程中的电阻率变化。预测结果与实验值的相关系数为0.9958,相对误差为0.33%。采用预测数据可以建立一种新型的“固溶-电阻率”物理图形。该图形显示,实验合金的最佳固溶温度区间为465~475 °C,保温时间为50~60 min;在该区间内第二相的溶解与再结晶对合金性能的影响将达到平衡。

Abstract: The effects of the solid solution conditions on the microstructure and tensile properties of Al-Zn-Mg-Cu aluminum alloy were investigated by in-situ resistivity measurement, optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile test. A radial basis function artificial neural network (RBF-ANN) model was developed for the analysis and prediction of the electrical resistivity of the tested alloy during the solid solution process. The results show that the model is capable of predicting the electrical resistivity with remarkable success. The correlation coefficient between the predicted results and experimental data is 0.9958 and the relative error is 0.33%. The predicted data were adopted to construct a novel physical picture which was defined as “solution resistivity map”. As revealed by the map, the optimum domain for the solid solution of the tested alloy is in the temperature range of 465-475 °C and solution time range of 50-60 min. In this domain, the solution of second particles and the recrystallization phenomenon will reach equilibrium.

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号