简介概要

Effect of SAP on Properties of High Performance Concrete under Marine Wetting and Drying Cycles

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2019年第5期

论文作者:Ouattara Coumoin Cherel WANG Fazhou YANG Jin 刘志超

文章页码:1136 - 1142

摘    要:The internal curing effect of superabsorbent polymer(SAP) on the properties of high performance concrete(HPC) under marine wetting and drying cycles(WD cycles) was investigated. Compressive strength, hydration and chloride migration were experimentally investigated and the results were evaluated by compasison with those under fresh water curing(FW). Water absorption and porosity were also evaluated only under WD cycles. The results showed the important influence of wetting and drying cycles on the properties of SAP modified HPC properties. Carefully designed, SAP minimized the long-term compressive strength of HPC under marine WD cycles. The hydration rate was faster in the initial curing, but became lower as compared with that cured in FW. In addition, SAP improved the long-term water absorption resistance and chloride migration resistance of HPC under marine WD cycles. The examination of the porosity showed a lower increase of the volume of capillary pores in SAP modified HPC under long term WD cycles compared with that without SAP. Therefore, internal curing by SAP could improve the durability properties of HPC under marine WD cycles.

详情信息展示

Effect of SAP on Properties of High Performance Concrete under Marine Wetting and Drying Cycles

Ouattara Coumoin Cherel1,WANG Fazhou1,2,YANG Jin3,刘志超1,2,3,4

1. State Key Laboratory of Silicate Materials for Architecture, Wuhan University of Technology2. School of Materials Science and Engineering, Wuhan University of Technology3. School of Civil Engineering and Architecture,Hubei University of Technology4. State Key Laboratory of Green Building Materials, China Building Materials Academy

摘 要:The internal curing effect of superabsorbent polymer(SAP) on the properties of high performance concrete(HPC) under marine wetting and drying cycles(WD cycles) was investigated. Compressive strength, hydration and chloride migration were experimentally investigated and the results were evaluated by compasison with those under fresh water curing(FW). Water absorption and porosity were also evaluated only under WD cycles. The results showed the important influence of wetting and drying cycles on the properties of SAP modified HPC properties. Carefully designed, SAP minimized the long-term compressive strength of HPC under marine WD cycles. The hydration rate was faster in the initial curing, but became lower as compared with that cured in FW. In addition, SAP improved the long-term water absorption resistance and chloride migration resistance of HPC under marine WD cycles. The examination of the porosity showed a lower increase of the volume of capillary pores in SAP modified HPC under long term WD cycles compared with that without SAP. Therefore, internal curing by SAP could improve the durability properties of HPC under marine WD cycles.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号