简介概要

基于PSO-BP神经网络的掘进机截割部故障诊断

来源期刊:煤炭科学技术2017年第10期

论文作者:杨健健 唐至威 王子瑞 吴淼

文章页码:129 - 134

关键词:掘进机;截割部;故障诊断;PSO算法;

摘    要:为提高部分断面掘进机截割部故障诊断的有效性与准确性,以部分断面掘进机截割部振动加速度信号为研究对象,从煤矿井下采集了掘进机截割部振动加速度数据,分析并提取了表征掘进机截割部运行状态的特征向量,采用BP神经网络作为故障诊断方法,利用PSO算法的快速收敛性及全局搜索能力直接对BP网络的权值阈值进行优化,解决了BP神经网络收敛速度慢及易陷入局部极小值的问题。通过对数据样本进行训练与测试,构建了能够诊断截割部是否故障的PSO-BP神经网络,对EBZ-160型掘进机截割部是否发生故障进行诊断。试验结果表明:与快速BP法优化的BP神经网络(FBP神经网络)相比,PSO-BP网络诊断精度更高,训练步数更少。该方法能准确有效地诊断掘进机截割部故障,为掘进机截割部故障诊断研究提供了方法与思路。

详情信息展示

基于PSO-BP神经网络的掘进机截割部故障诊断

杨健健,唐至威,王子瑞,吴淼

中国矿业大学(北京)机电与信息工程学院

摘 要:为提高部分断面掘进机截割部故障诊断的有效性与准确性,以部分断面掘进机截割部振动加速度信号为研究对象,从煤矿井下采集了掘进机截割部振动加速度数据,分析并提取了表征掘进机截割部运行状态的特征向量,采用BP神经网络作为故障诊断方法,利用PSO算法的快速收敛性及全局搜索能力直接对BP网络的权值阈值进行优化,解决了BP神经网络收敛速度慢及易陷入局部极小值的问题。通过对数据样本进行训练与测试,构建了能够诊断截割部是否故障的PSO-BP神经网络,对EBZ-160型掘进机截割部是否发生故障进行诊断。试验结果表明:与快速BP法优化的BP神经网络(FBP神经网络)相比,PSO-BP网络诊断精度更高,训练步数更少。该方法能准确有效地诊断掘进机截割部故障,为掘进机截割部故障诊断研究提供了方法与思路。

关键词:掘进机;截割部;故障诊断;PSO算法;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号