简介概要

Preparation and Performance of Ce/Zr Mixed Oxides for Direct Conversion of Methane to Syngas

来源期刊:Journal of Rare Earths2007年第S1期

论文作者:魏永刚 王华 李孔斋 刘明春 敖先权

文章页码:110 - 114

摘    要:CexZr1-xO2 mixed oxides with different Ce/Zr ratios were prepared by coprecipitation. The characterizations of mixed oxides were studied by X-ray diffraction (XRD) and H2-TPR. And the performances were tested in a fixed-bed quartz reactor. The results indicated that lattice oxygen of CexZr1-xO2 could oxidate methane to syngas and the incorporation of zirconium into the ceria lattice could improve the O2- mobility. The Ce0.7Zr0.3O2 had the best activity in investigative temperature ranging from 600 to 900 ℃. Effects of reaction time on H2/CO ratio were studied at 850 ℃ when using Ce0.7Zr0.3O2 as catalyst. The results indicated that the ratio was closed to 2 values in the first 10 min, however, it rapidly increased with reaction time after >10 min. The possible reason was that the direct partial oxidation of methane reaction was dominant in the first 10 min. However, the methane pyrogenation was responsible for the rapid increase of H2/CO ratio after 10 min. Thus, if syngas with H2/CO ratio of 2 wanted to be obtained, the reaction time needed to be controlled.

详情信息展示

Preparation and Performance of Ce/Zr Mixed Oxides for Direct Conversion of Methane to Syngas

魏永刚,王华,李孔斋,刘明春,敖先权

摘 要:CexZr1-xO2 mixed oxides with different Ce/Zr ratios were prepared by coprecipitation. The characterizations of mixed oxides were studied by X-ray diffraction (XRD) and H2-TPR. And the performances were tested in a fixed-bed quartz reactor. The results indicated that lattice oxygen of CexZr1-xO2 could oxidate methane to syngas and the incorporation of zirconium into the ceria lattice could improve the O2- mobility. The Ce0.7Zr0.3O2 had the best activity in investigative temperature ranging from 600 to 900 ℃. Effects of reaction time on H2/CO ratio were studied at 850 ℃ when using Ce0.7Zr0.3O2 as catalyst. The results indicated that the ratio was closed to 2 values in the first 10 min, however, it rapidly increased with reaction time after >10 min. The possible reason was that the direct partial oxidation of methane reaction was dominant in the first 10 min. However, the methane pyrogenation was responsible for the rapid increase of H2/CO ratio after 10 min. Thus, if syngas with H2/CO ratio of 2 wanted to be obtained, the reaction time needed to be controlled.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号