基于确定性学习的人体步态识别方法研究
来源期刊:控制工程2018年第2期
论文作者:杨飞飞 陶玉昆 司文杰
文章页码:259 - 266
关键词:确定性学习;时序数据序列;关节角;人体步态识别;相似性定义;
摘 要:基于确定性学习理论,提出了一种基于关节角时序数据序列的人体步态识别方法。首先,由人体运动捕捉设备获取关节角时序数据序列,则局部准确的人体步态的内部动力学可通过径向基函数(RBF)网络得到逼近。进一步,证明了逼近误差和相关神经网络(NN)参数的收敛。接下来,通过将NN逼近得到的步态动力学知识存储于常值的RBF网络,可实现人体移动步态特征的有效表达。最后,通过构建步态模式的相似性定义,提出了一种步态时序数据识别的方法,最终可实现准确的步态识别。仿真实验采用类圆规双足机器人验证了所提方法的有效性。
杨飞飞1,陶玉昆1,司文杰2
1. 郑州轻工业学院电气信息工程学院2. 华南理工大学机械与汽车工程学院
摘 要:基于确定性学习理论,提出了一种基于关节角时序数据序列的人体步态识别方法。首先,由人体运动捕捉设备获取关节角时序数据序列,则局部准确的人体步态的内部动力学可通过径向基函数(RBF)网络得到逼近。进一步,证明了逼近误差和相关神经网络(NN)参数的收敛。接下来,通过将NN逼近得到的步态动力学知识存储于常值的RBF网络,可实现人体移动步态特征的有效表达。最后,通过构建步态模式的相似性定义,提出了一种步态时序数据识别的方法,最终可实现准确的步态识别。仿真实验采用类圆规双足机器人验证了所提方法的有效性。
关键词:确定性学习;时序数据序列;关节角;人体步态识别;相似性定义;