基于GA和BP混合算法的水下机器人系统建模

来源期刊:中南大学学报(自然科学版)2011年第z1期

论文作者:王建国 姜春萌 孙玉山 何斌 李吉庆

文章页码:427 - 431

关键词:水下机器人;系统辨识;神经网络;遗传算法;误差反传算法

Key words:underwater vehicle; system identification; neural network; genetic algorithm; back propagation algorithm

摘    要:借鉴Jordan和Elman神经网络的优点,构造一种新型的动态神经网络。将基于遗传算法(GA)和误差反传算法(BP)的混合算法用于神经网络的权值调整。为了提高收敛速度,避免系统陷于局部极小值。将改进的神经网络应用于水下机器人系统建模。仿真结果表明,该网络能对隐含层的历史状态进行记忆,并实现在线调整历史信号对当前值的影响,并且增加了输出层节点的反馈以增强神经网络的信号处理能力。基于混合算法的神经网络提高了学习的收敛速度和辨识精度。

Abstract: A new dynamic neural network was constructed by borrowing ideas from Jordan and Elman neural networks. To accelerate the rate of convergence and avoid getting into local extremum, a hybrid learning algorithm by Genetic algorithm (GA) and error back propagation algorithm (BP) was used to tune the weight values of the network. Finally, the improved neural network was utilized to identify the AUV hydrodynamic model. The simulation results show that the new network can remember the history state of hidden layer and tune the effect of the past signal to the current value real-timely. And in the presented network, the feedback of output layer nodes is increased to enhance the ability of handling signals. The neural network by hybrid learning algorithm improves the learning rapidity of convergence and identification precision.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号