简介概要

Enhancing strength and plasticity by pre-introduced indent-notches in Zr36Cu64metallic glass: A molecular dynamics simulation study

来源期刊:JOURNAL OF MATERIALS SCIENCE TECHNOLOG2020年第8期

论文作者:Shidong Feng Lin Li K.C.Chan Lei Zhao Limin Wang Riping Liu

文章页码:119 - 125

摘    要:The deformation behavior in Zr36 Cu64 metallic glasses with pre-introduced indent-notches has been studied by molecular dynamics simulation at the atomic scale. The indent-notches can trigger the formation of densely-packed clusters composed of solid-like atoms in the indent-notch affected zone. These denselypacked clusters are highly resistant to the nucleation of shear bands. Hence, there is more tendency for the shear bands to nucleate outside the indent-notch affected zone, which enlarges the deformation region and enhances both the strengthening effect and the plastic deformation ability. For indent-notched MGs, when determining the initial yielding level, there is a competition process occurring between the densely-packed clusters leading to the shear band formation outside the indent-notch affected zone and the stress-concentration localizing deformation around the notch roots. When the indent-notch depth is small, the stress-concentration around the notch root plays a dominant role, leading to the shear bands initiating from the notch root, reminiscence of the cut-notches. As the indent-notch depth increases,there are many densely-packed clusters with high resistance to deformation in the indent-notch affected zone, leading to the shear band formation from the interface between the indent-notch affected zone and the matrix. Current research findings provide a feasible means for improving the strength and the plasticity of metallic glasses at room temperature.

详情信息展示

Enhancing strength and plasticity by pre-introduced indent-notches in Zr36Cu64metallic glass: A molecular dynamics simulation study

Shidong Feng1,2,Lin Li3,K.C.Chan2,Lei Zhao2,Limin Wang1,Riping Liu1

1. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University2. Advanced Manufacturing Technology Research Centre, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University3. Department of Metallurgical and Materials Engineering, The University of Alabama

摘 要:The deformation behavior in Zr36 Cu64 metallic glasses with pre-introduced indent-notches has been studied by molecular dynamics simulation at the atomic scale. The indent-notches can trigger the formation of densely-packed clusters composed of solid-like atoms in the indent-notch affected zone. These denselypacked clusters are highly resistant to the nucleation of shear bands. Hence, there is more tendency for the shear bands to nucleate outside the indent-notch affected zone, which enlarges the deformation region and enhances both the strengthening effect and the plastic deformation ability. For indent-notched MGs, when determining the initial yielding level, there is a competition process occurring between the densely-packed clusters leading to the shear band formation outside the indent-notch affected zone and the stress-concentration localizing deformation around the notch roots. When the indent-notch depth is small, the stress-concentration around the notch root plays a dominant role, leading to the shear bands initiating from the notch root, reminiscence of the cut-notches. As the indent-notch depth increases,there are many densely-packed clusters with high resistance to deformation in the indent-notch affected zone, leading to the shear band formation from the interface between the indent-notch affected zone and the matrix. Current research findings provide a feasible means for improving the strength and the plasticity of metallic glasses at room temperature.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号