简介概要

Synthesis and characterization of La(OH)3 nanopowders from hydrolysis of lanthanum carbide

来源期刊:JOURNAL OF RARE EARTHS2011年第5期

论文作者:李其亭 倪建森 吴移清 杜亚男 丁伟中 耿淑华

文章页码:416 - 419

摘    要:The lanthanum carbide alloy was induction melted in vacuum induction melting furnace from lanthanum and graphite with the mass ratio of 89:11. Lanthanum hydroxide (La(OH)3) nanopowders were prepared by a simple hydrolysis of lanthanum carbide at room temperature under normal atmospheric pressure without any surfactant. X-ray diffraction (XRD) showed that the nanoparticles were with a hex-agonal structure. The effect factors such as reaction time,reaction temperature and the mass ratio of lanthanum carbide powders to H2O on BET surface area of the obtained nanopowders were investigated. Furthermore,transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) showed that nanopowders behaved the morphology of short nanorod. The longitudinal growth direction of the nanorod had an angle of about 14° with the (101) lattice plane and the lateral growth direction had an angle of about 35° with the (200) lattice plane. The mechanism of formation of nanorod was discussed on the basis of the experimental results.

详情信息展示

Synthesis and characterization of La(OH)3 nanopowders from hydrolysis of lanthanum carbide

李其亭1,倪建森1,吴移清1,杜亚男1,丁伟中2,耿淑华2

1. Institute of Materials,Shanghai University2. Department of Materials Engineering of Shanghai University

摘 要:The lanthanum carbide alloy was induction melted in vacuum induction melting furnace from lanthanum and graphite with the mass ratio of 89:11. Lanthanum hydroxide (La(OH)3) nanopowders were prepared by a simple hydrolysis of lanthanum carbide at room temperature under normal atmospheric pressure without any surfactant. X-ray diffraction (XRD) showed that the nanoparticles were with a hex-agonal structure. The effect factors such as reaction time,reaction temperature and the mass ratio of lanthanum carbide powders to H2O on BET surface area of the obtained nanopowders were investigated. Furthermore,transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) showed that nanopowders behaved the morphology of short nanorod. The longitudinal growth direction of the nanorod had an angle of about 14° with the (101) lattice plane and the lateral growth direction had an angle of about 35° with the (200) lattice plane. The mechanism of formation of nanorod was discussed on the basis of the experimental results.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号