H-K-ELM在滚动轴承故障诊断中的应用
来源期刊:机械设计与制造2018年第8期
论文作者:秦波 秦波 王建国
文章页码:11 - 14
关键词:滚动轴承;故障诊断;排列熵;自动编码器;极限学习机;
摘 要:针对滚动轴承振动信号的不规则性和复杂性,导致轴承状态难以有效识别的问题,提出基于分层核极限学习机(Hierarchical Kernel Extreme Learning Machine,H-K-ELM)的滚动轴承故障诊断方法。首先,将测得信号经集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)处理后得到一系列IMF本征模态分量,并提取各分量的排列熵PE值组成高维特征向量集;其次,利用高斯核函数的内积来表达ELM算法的隐含层输出函数,然后使用自动编码器对其分层,从而隐含层节点数自适应确定和隐含层阈值与输入权值满足正交条件;最后,将所得高维特征向量集作为H-KELM算法的输入,通过训练建立核函数极限学习机滚动轴承故障分类模型,进行滚动轴承不同故障状态的分类辨识。实验结果表明:H-K-ELM滚动轴承故障分类模型比ELM、K-ELM故障分类模型具有更高的精度、更强的稳定性。
秦波,孙国栋,王建国
内蒙古科技大学机械工程学院
摘 要:针对滚动轴承振动信号的不规则性和复杂性,导致轴承状态难以有效识别的问题,提出基于分层核极限学习机(Hierarchical Kernel Extreme Learning Machine,H-K-ELM)的滚动轴承故障诊断方法。首先,将测得信号经集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)处理后得到一系列IMF本征模态分量,并提取各分量的排列熵PE值组成高维特征向量集;其次,利用高斯核函数的内积来表达ELM算法的隐含层输出函数,然后使用自动编码器对其分层,从而隐含层节点数自适应确定和隐含层阈值与输入权值满足正交条件;最后,将所得高维特征向量集作为H-KELM算法的输入,通过训练建立核函数极限学习机滚动轴承故障分类模型,进行滚动轴承不同故障状态的分类辨识。实验结果表明:H-K-ELM滚动轴承故障分类模型比ELM、K-ELM故障分类模型具有更高的精度、更强的稳定性。
关键词:滚动轴承;故障诊断;排列熵;自动编码器;极限学习机;