汽油机进气歧管压力传感器非线性智能校正

来源期刊:中南大学学报(自然科学版)2008年第3期

论文作者:蒋寿生 鄂加强 龚金科 袁文华

文章页码:566 - 566

关键词:汽油机;非线性校正;神经网络;压力传感器

Key words:gasoline engine; nonlinear correction; neural network; pressure transducer

摘    要:为了消除汽油机进气歧管压力传感器在其运行状况中受温度以及电流波动因素干扰的影响,采用神经网络信息融合技术对压力测量过程中的温度以及电流波动等干扰因素进行非线性智能校正实验。结果表明:经非线性智能校正后,压力传感器非目标参量的影响被有效地消除,其输出稳定性比原来提高了约19倍,进气歧管压力传感器测量精度至少提高2.0%。

Abstract: In order to eliminate disturb effects caused by temperature parameter and fluctuant electric current on pressure transducer from air intake pipe in the gasoline engine in operation, nonlinear intelligent correction of pressure transducer from disturb effects caused by temperature parameter and fluctuant electric current was made based on neural network information fusion technology. The results show that some effects from non-goal parameter for pressure transducer can be eliminated availably by using nonlinear intelligent correction, and the output stability after being nonlinear corrected is twenty times as the output stability before being nonlinear corrected and the measurement precision is enhanced by 2.0% at least.

基金信息:“985工程”二期资助项目

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号