简介概要

一种改进的多agent分布式联盟形成算法

来源期刊:控制与决策2017年第4期

论文作者:卢少磊 方浩

文章页码:632 - 636

关键词:多agent系统;联盟形成;任务准备度;强化学习;

摘    要:仅采用任务性价比作为多智能体任务分配过程中的任务选择标准,会产生时间消耗大、资源利用低等问题.为此,综合任务性价比和智能体资源的特点,提出了多任务准备度的概念.根据多智能体任务分配过程的收敛性和时效性,采用Learning Automata算法动态调整任务准备度各项的权重;进而利用该方法模拟解决了低、中、高3种任务需求下多智能体任务分配问题.仿真实验结果验证了所提出方法的有效性,资源冗余可至少减少20%.

详情信息展示

一种改进的多agent分布式联盟形成算法

卢少磊,方浩

北京理工大学自动化学院

摘 要:仅采用任务性价比作为多智能体任务分配过程中的任务选择标准,会产生时间消耗大、资源利用低等问题.为此,综合任务性价比和智能体资源的特点,提出了多任务准备度的概念.根据多智能体任务分配过程的收敛性和时效性,采用Learning Automata算法动态调整任务准备度各项的权重;进而利用该方法模拟解决了低、中、高3种任务需求下多智能体任务分配问题.仿真实验结果验证了所提出方法的有效性,资源冗余可至少减少20%.

关键词:多agent系统;联盟形成;任务准备度;强化学习;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号