简介概要

蚁群聚类算法的并行化设计与实现

来源期刊:控制工程2013年第3期

论文作者:杨燕 王全根 黄波

文章页码:411 - 414

关键词:聚类;蚁群算法;MPI并行计算;

摘    要:蚁群聚类是一种有效的聚类方法,已在数据分析等领域获得广泛应用。MPI并行计算提供高效的数据处理方案,研究蚁群聚类算法的并行化是目前具有挑战性的研究课题。首先介绍了基于传统编程模型的解决TSP问题的蚁群优化算法,以及蚁群优化算法和K-means结合的聚类方法,描述了它们的基本原理和实现过程。然后,对基于传统编程模型的聚类算法进行MPI并行化改进,实现了基于MPI并行计算的蚁群聚类算法。最后,分别采用Iris、Wine、Zoo3个UCI数据集和Reuter-21578文本数据集进行多次测试,对基于传统编程模型的聚类算法和基于MPI并行计算的聚类算法进行性能和效率上的比较,得出基于MPI并行计算的聚类算法更优的结论。

详情信息展示

蚁群聚类算法的并行化设计与实现

杨燕,王全根,黄波

西南交通大学信息科学与技术学院

摘 要:蚁群聚类是一种有效的聚类方法,已在数据分析等领域获得广泛应用。MPI并行计算提供高效的数据处理方案,研究蚁群聚类算法的并行化是目前具有挑战性的研究课题。首先介绍了基于传统编程模型的解决TSP问题的蚁群优化算法,以及蚁群优化算法和K-means结合的聚类方法,描述了它们的基本原理和实现过程。然后,对基于传统编程模型的聚类算法进行MPI并行化改进,实现了基于MPI并行计算的蚁群聚类算法。最后,分别采用Iris、Wine、Zoo3个UCI数据集和Reuter-21578文本数据集进行多次测试,对基于传统编程模型的聚类算法和基于MPI并行计算的聚类算法进行性能和效率上的比较,得出基于MPI并行计算的聚类算法更优的结论。

关键词:聚类;蚁群算法;MPI并行计算;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号