简介概要

基于DNPSO的支持向量机的发动机故障诊断

来源期刊:东北大学学报(自然科学版)2012年第4期

论文作者:聂立新 张天侠 张丽萍 郭立新

文章页码:571 - 575

关键词:支持向量机;粒子群优化算法;动态邻域;田口试验;惩罚参数;核函数评估参数;故障诊断;

摘    要:设定了基于粒子序号和粒子邻居数量的动态邻域粒子群模式,并通过田口试验分析了6种测试函数的优化性能,选定了粒子群算法的惯性权重、粒子邻居数量及加速系数等参数的较优渐变模式,建立了具有较为广泛适应性且运算量相对较低的动态邻域粒子群模型.利用该模型优化了支持向量机的惩罚参数和核函数评估参数,在发动机的故障特征识别过程中,通过与BP神经网络及标准粒子群算法优化参数的支持向量机等分类器的比较,动态邻域粒子群算法优化的支持向量机具有较高的特征识别能力和较强的鲁棒性.

详情信息展示

基于DNPSO的支持向量机的发动机故障诊断

聂立新,张天侠,张丽萍,郭立新

东北大学机械工程与自动化学院

摘 要:设定了基于粒子序号和粒子邻居数量的动态邻域粒子群模式,并通过田口试验分析了6种测试函数的优化性能,选定了粒子群算法的惯性权重、粒子邻居数量及加速系数等参数的较优渐变模式,建立了具有较为广泛适应性且运算量相对较低的动态邻域粒子群模型.利用该模型优化了支持向量机的惩罚参数和核函数评估参数,在发动机的故障特征识别过程中,通过与BP神经网络及标准粒子群算法优化参数的支持向量机等分类器的比较,动态邻域粒子群算法优化的支持向量机具有较高的特征识别能力和较强的鲁棒性.

关键词:支持向量机;粒子群优化算法;动态邻域;田口试验;惩罚参数;核函数评估参数;故障诊断;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号