基于微粒群优化算法的异步电机模型参数辨识

来源期刊:中南大学学报(自然科学版)2011年第z1期

论文作者:仇一鸣 李文启 杨东升 汪镭 吴启迪

文章页码:148 - 153

关键词:PSO;异步电机;矢量控制;参数辨识

Key words:PSO; induction motor; vector control; parameter identification

摘    要:在交流传动控制系统具体工程实践中,矢量控制算法的设计者与异步电机设计者、最终应用者是相互独立的,电机数学模型参数与矢量控制结构模型均不明确,模型参数优化问题在很大程度上制约系统性能的发挥。本研究借助成熟的矢量控制变频器硬件平台,通过运动控制器中IEC61131-3语言编程,完成基于微粒群优化算法的迭代寻优,在线辨识出具有与直流电机相似动态特性的等效电机模型参数。分析结果和实验验证结果表明:PSO算法对工控系统CPU的运算速度与内存资源要求不高,且收敛速度较快,可作为现有参数辨识功能的有益补充,解决常规辨识方法对特种电机如高饱和磁路设计电机辨识效果不佳的问题。

Abstract: During the adjustment of an AC drive system with induction motor, the designer of the vector-control algorithm, the designer of induction motor and the engineer who makes the adjustment work separately. So in most cases, the equivalent model of the motor and the control structure of the inverter are unknown, which limits the performance of the system. In this paper a PSO algorithm was programmed with IEC61131-3 language in a motion controller to estimate the parameter for the model of motor & controller based on the hardware of a vector controlled inverter, in order to reach the similar dynamic performance as a DC motor. The PSO algorithm can be a kind of alternative approach of present parameter identification functions, for its requirements on the speed of CPU and volume of memory are low, while it converges quickly. It’s especially helpful for special motor, e.g. the motor with high saturation design.

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号