一种面向数据流的频繁项集挖掘算法
来源期刊:昆明理工大学学报(自然科学版)2009年第5期
论文作者:孟彩霞
文章页码:26 - 65
关键词:数据流;数据挖掘;数据流挖掘;频繁项集;
摘 要:与传统静态数据库中的数据不同,数据流是一个按时间到达的有序的项集,这使得经典的频繁项集挖掘算法难以适用到数据流中.根据数据流的特点,提出了数据流频繁项集挖掘算法FP-SegCount.该算法将数据流分段并利用改进的FP-growth算法挖掘分段中的频繁项集.然后,利用Count Min Sketch进行项集计数.算法解决了压缩统计和计算快速高效的问题.通过和FP-DS算法的实验对比,FP-SegCount算法具有较好的时间效率.
孟彩霞
西安邮电学院计算机科学系
摘 要:与传统静态数据库中的数据不同,数据流是一个按时间到达的有序的项集,这使得经典的频繁项集挖掘算法难以适用到数据流中.根据数据流的特点,提出了数据流频繁项集挖掘算法FP-SegCount.该算法将数据流分段并利用改进的FP-growth算法挖掘分段中的频繁项集.然后,利用Count Min Sketch进行项集计数.算法解决了压缩统计和计算快速高效的问题.通过和FP-DS算法的实验对比,FP-SegCount算法具有较好的时间效率.
关键词:数据流;数据挖掘;数据流挖掘;频繁项集;