散乱点云的孔洞识别和边界提取算法研究
来源期刊:机械设计与制造2019年第3期
论文作者:王春香 孟宏 张勇
文章页码:74 - 157
关键词:散乱点云;KD树;K邻域搜索;单坐标搜索法;边界追踪;孔洞边界;
摘 要:针对逆向工程中已有孔洞识别算法执行效率低、孔洞边界点提取不完整等问题,提出一种新的基于KD树和K邻域搜索的点云孔洞识别及边界提取算法。该算法首先利用KD树建立散乱点云的拓扑关系。其次,计算点云密度、定义距离阈值作为判别参数,利用K邻域搜索计算每个点与其K个邻域点的距离,距离大于阈值的点即为边界点。再次,采用单坐标搜索法去除外边界,保留孔洞边界。最后,利用边界追踪算法获取完整的孔洞边界点。以涡轮叶片和挖掘机斗齿为研究对象,对点云上的自然孔洞利用该算法进行识别。结果表明,该算法能够快速地识别出散乱点云中孔洞,并能完整地提取出孔洞边界点,实用性强。
王春香,孟宏,张勇
内蒙古科技大学机械学院
摘 要:针对逆向工程中已有孔洞识别算法执行效率低、孔洞边界点提取不完整等问题,提出一种新的基于KD树和K邻域搜索的点云孔洞识别及边界提取算法。该算法首先利用KD树建立散乱点云的拓扑关系。其次,计算点云密度、定义距离阈值作为判别参数,利用K邻域搜索计算每个点与其K个邻域点的距离,距离大于阈值的点即为边界点。再次,采用单坐标搜索法去除外边界,保留孔洞边界。最后,利用边界追踪算法获取完整的孔洞边界点。以涡轮叶片和挖掘机斗齿为研究对象,对点云上的自然孔洞利用该算法进行识别。结果表明,该算法能够快速地识别出散乱点云中孔洞,并能完整地提取出孔洞边界点,实用性强。
关键词:散乱点云;KD树;K邻域搜索;单坐标搜索法;边界追踪;孔洞边界;