简介概要

基于压缩采集与CNN的风电机轴承故障诊断

来源期刊:控制工程2021年第3期

论文作者:吴定会 韩欣宏 郑洋

文章页码:571 - 578

关键词:风电机;故障诊断;观测矩阵;卷积神经网络;

摘    要:针对传统风电机轴承故障检测存在的采样数据量大、故障特征依赖主观选取的问题,提出了风电机轴承故障的信号压缩采集、自动提取特征及故障诊断的方法,解决了风电机轴承振动信号特征提取计算复杂、受先验知识影响较大的问题。首先基于梯度加速法(NAG)和QR分解理论对随机高斯观测矩阵进行优化,实现风电机轴承振动信号压缩采集;然后将压缩采集得到的数据作为卷积神经网络(CNN)的输入,利用卷积池化层提取压缩采集数据中的故障特征;最后,将得到的故障特征通过softmax分类器进行分类。仿真实验表明:该方法能够自动提取风电机轴承的故障特征,在保证较高故障诊断准确率的同时,缩短了网络训练时间。

详情信息展示

基于压缩采集与CNN的风电机轴承故障诊断

吴定会,韩欣宏,郑洋

江南大学物联网工程学院

摘 要:针对传统风电机轴承故障检测存在的采样数据量大、故障特征依赖主观选取的问题,提出了风电机轴承故障的信号压缩采集、自动提取特征及故障诊断的方法,解决了风电机轴承振动信号特征提取计算复杂、受先验知识影响较大的问题。首先基于梯度加速法(NAG)和QR分解理论对随机高斯观测矩阵进行优化,实现风电机轴承振动信号压缩采集;然后将压缩采集得到的数据作为卷积神经网络(CNN)的输入,利用卷积池化层提取压缩采集数据中的故障特征;最后,将得到的故障特征通过softmax分类器进行分类。仿真实验表明:该方法能够自动提取风电机轴承的故障特征,在保证较高故障诊断准确率的同时,缩短了网络训练时间。

关键词:风电机;故障诊断;观测矩阵;卷积神经网络;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号