基于置信规则库的海基系统性能退化机理分析与预测
来源期刊:控制与决策2019年第3期
论文作者:韩润繁 陈桂明 常雷雷 凌晓东
文章页码:479 - 486
关键词:海基系统;退化分析;预测;置信规则库;
摘 要:海基系统性能退化机理分析和预测对于提高海基系统的生存能力具有重要意义,但需要考虑不确定条件下的多种类型信息,传统方法在处理海基系统的不确定性时效果欠佳,而置信规则库(BRB)作为证据推理方法中的知识库又无法同时处理参数精度优化和组合爆炸问题.对此,采用BRB参数与结构联合优化方法,建立双层优化的海基系统置信规则库最优决策结构,以AIC(Akaike information criterion)为外层模型优化目标, MSE(Mean square error)为内层模型优化目标,实现同时优化的目的.对比模型输出和实际输出,并采用支持向量机(SVM)进行实验,结果表明,采用具有最优决策结构的海基系统置信规则库建模不仅可以降低模型中规则的数量,也可提高建模精度,验证了所提出方法的有效性.
韩润繁1,陈桂明1,常雷雷1,凌晓东2
1. 火箭军工程大学作战保障学院2. 中国卫星海上测控部飞行器海上测量与测控联合实验室
摘 要:海基系统性能退化机理分析和预测对于提高海基系统的生存能力具有重要意义,但需要考虑不确定条件下的多种类型信息,传统方法在处理海基系统的不确定性时效果欠佳,而置信规则库(BRB)作为证据推理方法中的知识库又无法同时处理参数精度优化和组合爆炸问题.对此,采用BRB参数与结构联合优化方法,建立双层优化的海基系统置信规则库最优决策结构,以AIC(Akaike information criterion)为外层模型优化目标, MSE(Mean square error)为内层模型优化目标,实现同时优化的目的.对比模型输出和实际输出,并采用支持向量机(SVM)进行实验,结果表明,采用具有最优决策结构的海基系统置信规则库建模不仅可以降低模型中规则的数量,也可提高建模精度,验证了所提出方法的有效性.
关键词:海基系统;退化分析;预测;置信规则库;