一种广义次成分提取算法及其收敛性分析
来源期刊:控制与决策2020年第6期
论文作者:杜柏阳 孔祥玉 冯晓伟 高迎彬 罗家宇
文章页码:1505 - 1511
关键词:广义次成分分析;确定性离散时间;收敛性分析;自稳定性分析;
摘 要:广义次成分分析(generalized minor component analysis, GMCA)在现代信号处理的许多领域具有重要作用.目前现有的大多算法不能同时具备与算法对应的信息准则,以及收敛性、自稳定性和多个广义次成分提取的性能.针对上述问题,利用一种新的信息传播规则,推导出一种广义次成分提取算法,并采用确定离散时间方法(deterministic discrete time, DDT)对算法的全局收敛性能进行分析;同时,通过理论分析算法的收敛性能与算法初始状态的关系,表明算法具有自稳定性.进一步地,探索了算法在多重广义次成分提取方面的应用.相比之前的算法,所提算法具有更快的收敛速度. Matlab仿真验证了所提出算法的各项性能.
杜柏阳,孔祥玉,冯晓伟,高迎彬,罗家宇
火箭军工程大学导弹工程学院
摘 要:广义次成分分析(generalized minor component analysis, GMCA)在现代信号处理的许多领域具有重要作用.目前现有的大多算法不能同时具备与算法对应的信息准则,以及收敛性、自稳定性和多个广义次成分提取的性能.针对上述问题,利用一种新的信息传播规则,推导出一种广义次成分提取算法,并采用确定离散时间方法(deterministic discrete time, DDT)对算法的全局收敛性能进行分析;同时,通过理论分析算法的收敛性能与算法初始状态的关系,表明算法具有自稳定性.进一步地,探索了算法在多重广义次成分提取方面的应用.相比之前的算法,所提算法具有更快的收敛速度. Matlab仿真验证了所提出算法的各项性能.
关键词:广义次成分分析;确定性离散时间;收敛性分析;自稳定性分析;