基于粒子群优化算法的最大相关最小冗余混合式特征选择方法
来源期刊:控制与决策2013年第3期
论文作者:姚旭 王晓丹 张玉玺 权文
文章页码:413 - 840
关键词:特征选择;粒子群优化;Filter;Wrapper;互信息;
摘 要:在分析粒子群优化(PSO)算法和简化PSO算法的基础上,提出一种基于PSO的最大相关最小冗余的Filter-Wrapper混合式特征选择方法.Filter模型是基于互信息和特征的相关冗余综合测度,Wrapper模型是基于改进的简化粒子群算法.在PSO搜索过程中,引入相关冗余度量标准来选择特征子集,将Filter融合在Wrapper中,利用Filter的高效率和Wrapper的高精度提高搜索的速度和性能.最后以支持向量机(SVM)为分类器,在公共数据集UCI上进行实验,实验结果表明了所提出算法的可行性和有效性.
姚旭,王晓丹,张玉玺,权文
空军工程大学防空反导学院
摘 要:在分析粒子群优化(PSO)算法和简化PSO算法的基础上,提出一种基于PSO的最大相关最小冗余的Filter-Wrapper混合式特征选择方法.Filter模型是基于互信息和特征的相关冗余综合测度,Wrapper模型是基于改进的简化粒子群算法.在PSO搜索过程中,引入相关冗余度量标准来选择特征子集,将Filter融合在Wrapper中,利用Filter的高效率和Wrapper的高精度提高搜索的速度和性能.最后以支持向量机(SVM)为分类器,在公共数据集UCI上进行实验,实验结果表明了所提出算法的可行性和有效性.
关键词:特征选择;粒子群优化;Filter;Wrapper;互信息;