简介概要

基于粒子群优化算法的最大相关最小冗余混合式特征选择方法

来源期刊:控制与决策2013年第3期

论文作者:姚旭 王晓丹 张玉玺 权文

文章页码:413 - 840

关键词:特征选择;粒子群优化;Filter;Wrapper;互信息;

摘    要:在分析粒子群优化(PSO)算法和简化PSO算法的基础上,提出一种基于PSO的最大相关最小冗余的Filter-Wrapper混合式特征选择方法.Filter模型是基于互信息和特征的相关冗余综合测度,Wrapper模型是基于改进的简化粒子群算法.在PSO搜索过程中,引入相关冗余度量标准来选择特征子集,将Filter融合在Wrapper中,利用Filter的高效率和Wrapper的高精度提高搜索的速度和性能.最后以支持向量机(SVM)为分类器,在公共数据集UCI上进行实验,实验结果表明了所提出算法的可行性和有效性.

详情信息展示

基于粒子群优化算法的最大相关最小冗余混合式特征选择方法

姚旭,王晓丹,张玉玺,权文

空军工程大学防空反导学院

摘 要:在分析粒子群优化(PSO)算法和简化PSO算法的基础上,提出一种基于PSO的最大相关最小冗余的Filter-Wrapper混合式特征选择方法.Filter模型是基于互信息和特征的相关冗余综合测度,Wrapper模型是基于改进的简化粒子群算法.在PSO搜索过程中,引入相关冗余度量标准来选择特征子集,将Filter融合在Wrapper中,利用Filter的高效率和Wrapper的高精度提高搜索的速度和性能.最后以支持向量机(SVM)为分类器,在公共数据集UCI上进行实验,实验结果表明了所提出算法的可行性和有效性.

关键词:特征选择;粒子群优化;Filter;Wrapper;互信息;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号