简介概要

Virtual reconfigurable architecture for evolving combinational logic circuits

来源期刊:中南大学学报(英文版)2014年第5期

论文作者:WANG Jin(王进) LEE Chong-Ho

文章页码:1862 - 1870

Key words:evolutionary algorithm; evolvable hardware; self-adaptive mutation rate control; virtual reconfigurable architecture

Abstract: A virtual reconfigurable architecture (VRA)-based evolvable hardware is proposed for automatic synthesis of combinational logic circuits at gate-level. The proposed VRA is implemented by a Celoxica RC1000 peripheral component interconnect (PCI) board with an Xilinx Virtex xcv2000E field programmable gate array (FPGA). To improve the quality of the evolved circuits, the VRA works through a two-stage evolution: finding a functional circuit and minimizing the number of logic gates used in a feasible circuit. To optimize the algorithm performance in the two-stage evolutionary process and set free the user from the time-consuming process of mutation parameter tuning, a self-adaptive mutation rate control (SAMRC) scheme is introduced. In the evolutionary process, the mutation rate control parameters are encoded as additional genes in the chromosome and also undergo evolutionary operations. The efficiency of the proposed methodology is tested with the evolutions of a 4-bit even parity function, a 2-bit multiplier, and a 3-bit multiplier. The obtained results demonstrate that our scheme improves the evolutionary design of combinational logic circuits in terms of quality of the evolved circuit as well as the computational effort, when compared to the existing evolvable hardware approaches.

详情信息展示

Virtual reconfigurable architecture for evolving combinational logic circuits

WANG Jin(王进)1, 2, LEE Chong-Ho2

(1. Chongqing Key Laboratory of Computational Intelligence
(Chongqing University of Posts and Telecommunications), Chongqing 400065, China;
2. Department of Information & Communication Engineering, Inha University, Incheon 402-751, Korea)

Abstract:A virtual reconfigurable architecture (VRA)-based evolvable hardware is proposed for automatic synthesis of combinational logic circuits at gate-level. The proposed VRA is implemented by a Celoxica RC1000 peripheral component interconnect (PCI) board with an Xilinx Virtex xcv2000E field programmable gate array (FPGA). To improve the quality of the evolved circuits, the VRA works through a two-stage evolution: finding a functional circuit and minimizing the number of logic gates used in a feasible circuit. To optimize the algorithm performance in the two-stage evolutionary process and set free the user from the time-consuming process of mutation parameter tuning, a self-adaptive mutation rate control (SAMRC) scheme is introduced. In the evolutionary process, the mutation rate control parameters are encoded as additional genes in the chromosome and also undergo evolutionary operations. The efficiency of the proposed methodology is tested with the evolutions of a 4-bit even parity function, a 2-bit multiplier, and a 3-bit multiplier. The obtained results demonstrate that our scheme improves the evolutionary design of combinational logic circuits in terms of quality of the evolved circuit as well as the computational effort, when compared to the existing evolvable hardware approaches.

Key words:evolutionary algorithm; evolvable hardware; self-adaptive mutation rate control; virtual reconfigurable architecture

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号