简介概要

基于支持向量机集成的故障诊断

来源期刊:控制工程2005年第S2期

论文作者:李烨 蔡云泽 许晓鸣

关键词:故障诊断;支持向量机;集成学习;遗传算法;

摘    要:为提高故障诊断的准确性,提出了一种基于遗传算法的支持向量机集成学习方法,定义了相应的遗传操作算子,并探讨了集成下的分类器的构造策略。对汽轮机转子不平衡故障诊断的仿真实验结果表明,集成学习方法的性能通常优于单个支持向量机,而所提方法性能则优于Bagging与Boosting等传统集成学习方法,获得的集成所包括的分类器数目更少,而且结合多种分类器构造策略可提高分类器的多样性。该方法能容易地推广到神经网络、决策树等其他学习算法。

详情信息展示

基于支持向量机集成的故障诊断

李烨,蔡云泽,许晓鸣

摘 要:为提高故障诊断的准确性,提出了一种基于遗传算法的支持向量机集成学习方法,定义了相应的遗传操作算子,并探讨了集成下的分类器的构造策略。对汽轮机转子不平衡故障诊断的仿真实验结果表明,集成学习方法的性能通常优于单个支持向量机,而所提方法性能则优于Bagging与Boosting等传统集成学习方法,获得的集成所包括的分类器数目更少,而且结合多种分类器构造策略可提高分类器的多样性。该方法能容易地推广到神经网络、决策树等其他学习算法。

关键词:故障诊断;支持向量机;集成学习;遗传算法;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号