基于自适应时间窗的设备剩余寿命实时预测研究
来源期刊:机械设计与制造2019年第9期
论文作者:邬江波 王俊佳 石宇强 朱智鹏
文章页码:185 - 189
关键词:智能工厂MES;多样化健康状态;剩余寿命;自适应时间窗;
摘 要:为适应智能工厂设备剩余寿命预测和维护决策的实时性与准确性要求,针对设备的多样化健康状态与独立退化特性,综合考虑设备在不同作业环境中的个体差异与同类设备在重要指标上的共同依赖,设计了智能工厂MES中基于数据驱动的剩余寿命预测流程,该流程旨在实现独立退化特性设备的实时性剩余寿命预测;随后结合广义回归神经网络,提出一种基于实时状态的剩余寿命预测方法,该方法不仅采用自适应时间窗,提高了预测的精度,还进一步采用动态步长策略与相空间重构技术,降低了时序特征波动与训练样本较少带来的误差风险;最后利用轴承全生命周期数据,运用仿真验证了该方法的有效性。
邬江波,王俊佳,石宇强,朱智鹏
西南科技大学制造科学与工程学院
摘 要:为适应智能工厂设备剩余寿命预测和维护决策的实时性与准确性要求,针对设备的多样化健康状态与独立退化特性,综合考虑设备在不同作业环境中的个体差异与同类设备在重要指标上的共同依赖,设计了智能工厂MES中基于数据驱动的剩余寿命预测流程,该流程旨在实现独立退化特性设备的实时性剩余寿命预测;随后结合广义回归神经网络,提出一种基于实时状态的剩余寿命预测方法,该方法不仅采用自适应时间窗,提高了预测的精度,还进一步采用动态步长策略与相空间重构技术,降低了时序特征波动与训练样本较少带来的误差风险;最后利用轴承全生命周期数据,运用仿真验证了该方法的有效性。
关键词:智能工厂MES;多样化健康状态;剩余寿命;自适应时间窗;