简介概要

基于卷积神经网络的层级化智能故障诊断算法

来源期刊:控制与决策2019年第12期

论文作者:曲建岭 余路 袁涛 田沿平 高峰

文章页码:2619 - 2626

关键词:卷积神经网络;深度学习;层级化故障诊断;滚动轴承;振动信号;

摘    要:传统智能故障诊断算法需要依赖人工特征提取和专家知识,而旋转机械设备复杂的工作环境和工况使得传统算法在实际应用中缺乏良好的自适应性和泛化性.针对以上问题,提出基于卷积神经网络(Convolutional neural network, CNN)的层级化故障诊断算法(CNN based hierarchical fault diagnosis, CNN-HFD).首先,将原始振动信号进行分段预处理,以实现数据扩容;然后,分别根据故障类型和故障程度设计多个卷积神经网络,并将原始振动数据以某一时间步进行分割,作为卷积神经网络的输入进行训练;最后,将待识别信号送入CNN-HFD模型,经过分层故障诊断,在末端卷积神经网络输出相应故障类别和程度.通过滚动轴承振动数据库的实验表明,所提出的算法不仅具有高达99.5%以上的故障识别率,而且在负载发生变化时依然可以保持高达97%以上的故障识别率,具有较好的鲁棒性和泛化性能.

详情信息展示

基于卷积神经网络的层级化智能故障诊断算法

曲建岭1,余路1,2,袁涛1,田沿平1,高峰1

1. 海军航空大学青岛校区航空仪电控制工程与指挥系2. 海军潜艇学院航海观通系

摘 要:传统智能故障诊断算法需要依赖人工特征提取和专家知识,而旋转机械设备复杂的工作环境和工况使得传统算法在实际应用中缺乏良好的自适应性和泛化性.针对以上问题,提出基于卷积神经网络(Convolutional neural network, CNN)的层级化故障诊断算法(CNN based hierarchical fault diagnosis, CNN-HFD).首先,将原始振动信号进行分段预处理,以实现数据扩容;然后,分别根据故障类型和故障程度设计多个卷积神经网络,并将原始振动数据以某一时间步进行分割,作为卷积神经网络的输入进行训练;最后,将待识别信号送入CNN-HFD模型,经过分层故障诊断,在末端卷积神经网络输出相应故障类别和程度.通过滚动轴承振动数据库的实验表明,所提出的算法不仅具有高达99.5%以上的故障识别率,而且在负载发生变化时依然可以保持高达97%以上的故障识别率,具有较好的鲁棒性和泛化性能.

关键词:卷积神经网络;深度学习;层级化故障诊断;滚动轴承;振动信号;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号