一种基于聚类的滚动轴承故障诊断方法
来源期刊:机械设计与制造2012年第5期
论文作者:曹苏群 侯志伟 刘磊
文章页码:239 - 241
关键词:故障诊断;模糊聚类;Fisher准则;
摘 要:近年来,机器学习技术在故障智能诊断领域得到了广泛的应用,聚类作为最主要的无监督学习技术在基于机器学习的故障智能诊断中占有重要的地位。滚动轴承故障诊断中,传统的频谱分析法通常采用共振解调技术,但当内圈、滚动体或多点故障时,产生复合调制,从解调谱线很难分辨故障类型。针对此,提出了一种新的基于模糊聚类的滚动轴承故障诊断方法,该方法以模糊Fisher准则为聚类目标,通过对待测样本与已知状态样本数据聚类,求得待测样本隶属度,进而判断滚动轴承的故障类型。实验结果表明该方法是有效的。
曹苏群,侯志伟,刘磊
淮阴工学院机械工程学院
摘 要:近年来,机器学习技术在故障智能诊断领域得到了广泛的应用,聚类作为最主要的无监督学习技术在基于机器学习的故障智能诊断中占有重要的地位。滚动轴承故障诊断中,传统的频谱分析法通常采用共振解调技术,但当内圈、滚动体或多点故障时,产生复合调制,从解调谱线很难分辨故障类型。针对此,提出了一种新的基于模糊聚类的滚动轴承故障诊断方法,该方法以模糊Fisher准则为聚类目标,通过对待测样本与已知状态样本数据聚类,求得待测样本隶属度,进而判断滚动轴承的故障类型。实验结果表明该方法是有效的。
关键词:故障诊断;模糊聚类;Fisher准则;