简介概要

基于深度学习和多尺度编码组合的手背静脉识别

来源期刊:北方工业大学学报2015年第3期

论文作者:王一丁 徐林林 段强宇 贺文强

文章页码:6 - 13

关键词:多尺度编码;下采样;小波分解;CSLBP;RBM;PCA;LBP;

摘    要:针对手背静脉识别技术,提出了一种基于深度学习和多尺度编码组合的手背静脉识别算法.首先,利用下采样和小波分解获取多尺度下的手背静脉图像,然后采用中心对称的局部二值模式(CSLBP)提取图像的特征,再次对提取的特征采用深层模型—限制玻尔兹曼机(RBM)逐层训练,最后采用多尺度编码组合的方式进一步提高识别率.实验证明,本文所提出的方法较传统的PCA、LBP算法识别率更高.

详情信息展示

基于深度学习和多尺度编码组合的手背静脉识别

王一丁,徐林林,段强宇,贺文强

北方工业大学电子信息工程学院

摘 要:针对手背静脉识别技术,提出了一种基于深度学习和多尺度编码组合的手背静脉识别算法.首先,利用下采样和小波分解获取多尺度下的手背静脉图像,然后采用中心对称的局部二值模式(CSLBP)提取图像的特征,再次对提取的特征采用深层模型—限制玻尔兹曼机(RBM)逐层训练,最后采用多尺度编码组合的方式进一步提高识别率.实验证明,本文所提出的方法较传统的PCA、LBP算法识别率更高.

关键词:多尺度编码;下采样;小波分解;CSLBP;RBM;PCA;LBP;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号