声信号的MFDFA和SFLA-SVM算法的往复泵故障诊断
来源期刊:机械设计与制造2020年第4期
论文作者:裴峻峰 严安 彭剑
文章页码:199 - 410
关键词:往复泵;声信号;MFDFA;故障诊断;SVM;优化;
摘 要:利用声信号对往复泵进行状态监测,针对往复泵的声信号是具有非平稳性、非线性等复杂特征的信号,采用多重分形去趋势波动分析(MFDFA)计算时间序列声信号的多重分形谱,并提取作为故障特征量。分别用支持向量机(SVM)、遗传算法(GA)改进的SVM、混合蛙跳算法(SFLA)改进的SVM进行故障识别。通过实验测取往复泵的原始信息信号并分析,验证了声信号的波动呈现明显的多重分形特性,可以有效区分正常状态与故障状态,对比研究三种识别方法表明了基于混合蛙跳算法优化(SFLA)改进的支持向量机识别效果最好,基于MFDFA和SFLA-SVM相结合的故障诊断方法能准确地提高往复泵泵阀的故障诊断准确率,是往复泵故障诊断方法的一种新的有效方法。
裴峻峰1,严安1,彭剑1
1. 常州大学机械工程学院
摘 要:利用声信号对往复泵进行状态监测,针对往复泵的声信号是具有非平稳性、非线性等复杂特征的信号,采用多重分形去趋势波动分析(MFDFA)计算时间序列声信号的多重分形谱,并提取作为故障特征量。分别用支持向量机(SVM)、遗传算法(GA)改进的SVM、混合蛙跳算法(SFLA)改进的SVM进行故障识别。通过实验测取往复泵的原始信息信号并分析,验证了声信号的波动呈现明显的多重分形特性,可以有效区分正常状态与故障状态,对比研究三种识别方法表明了基于混合蛙跳算法优化(SFLA)改进的支持向量机识别效果最好,基于MFDFA和SFLA-SVM相结合的故障诊断方法能准确地提高往复泵泵阀的故障诊断准确率,是往复泵故障诊断方法的一种新的有效方法。
关键词:往复泵;声信号;MFDFA;故障诊断;SVM;优化;