基于优化支持向量机的带钢延伸量软测量研究
来源期刊:东北大学学报(自然科学版)2015年第8期
论文作者:王超 王建辉 顾树生 张宇献
文章页码:1084 - 1088
关键词:核主元分析;带钢延伸量;免疫粒子群算法;最小二乘支持向量机;软测量;
摘 要:带钢退火过程中存在多变量非线性主导因素和数据噪声,难以用数学模型精确描述退火炉内带钢的延伸量.针对这一问题,提出基于核主元分析(KPCA)与免疫粒子群(ICPSO)优化最小二乘支持向量机(LSSVM)的炉内带钢延伸量软测量方法.采用ICPSO算法避免了粒子群算法易陷入局部最优的缺陷,利用ICPSO对LSSVM进行参数寻优,通过KPCA去除样本噪声,提取输入数据样本中的非线性主元信息,建立ICPSO-LSSVM软测量模型.此方法用于退火炉内带钢延伸量预测,通过现场生产数据仿真实验进行非线性函数估计;对比其他几种现有算法,实验结果表明本文方法具有较高的预测精度.
王超1,王建辉1,顾树生1,张宇献2
1. 东北大学信息科学与工程学院2. 沈阳工业大学电气工程学院
摘 要:带钢退火过程中存在多变量非线性主导因素和数据噪声,难以用数学模型精确描述退火炉内带钢的延伸量.针对这一问题,提出基于核主元分析(KPCA)与免疫粒子群(ICPSO)优化最小二乘支持向量机(LSSVM)的炉内带钢延伸量软测量方法.采用ICPSO算法避免了粒子群算法易陷入局部最优的缺陷,利用ICPSO对LSSVM进行参数寻优,通过KPCA去除样本噪声,提取输入数据样本中的非线性主元信息,建立ICPSO-LSSVM软测量模型.此方法用于退火炉内带钢延伸量预测,通过现场生产数据仿真实验进行非线性函数估计;对比其他几种现有算法,实验结果表明本文方法具有较高的预测精度.
关键词:核主元分析;带钢延伸量;免疫粒子群算法;最小二乘支持向量机;软测量;