简介概要

Super-Elasticity Characteristics of TiNi Alloy Processed by Equal Channel Angular Extrusion

来源期刊:稀有金属材料与工程2009年增刊第3期

论文作者:Fan Zhiguo Jiang Hong Xie Chaoying

关键词:equal channel angular extrusion; TiNi shape memory alloy; R-phase transformation; martensitic transformation; super-elasticity;

摘    要:A Ni-rich TiNi alloy was processed by Equal Channel Angular Extrusion (ECAE) at 500℃. After four passes ECAE treatment, microstructure of the alloy was refined but slightly inhomogeneous, to sub-micron scale, approximately 0.5~0.6 μm. Comparing with the solution-treated TiNi specimen, the martensitic transformations start (M_s) and peak temperatures (M_p) of TiNi specimens processed by ECAE were dramatically lowered. After ECAE treatment, the R-phase transformation was stimulated and separated from martensitic transformation, but occurred within a larger temperature range. Super-elasticity characteristics of TiNi alloy were tested by tensile loading and unloading cycles. The results revealed that at a tensile strain of 6% or smaller, TiNi alloy processed by four passes ECAE showed better super-elasticity, with less residual strain retained, than solution-treated sample. After tensile strain exceeded 6%, up to 8%, the maximum recoverable strain of TiNi alloy ECAE treated was decreased. Microstructure evolution and its effect on phase transformations and super-elasticity characteristics were discussed.

详情信息展示

Super-Elasticity Characteristics of TiNi Alloy Processed by Equal Channel Angular Extrusion

()

摘要:A Ni-rich TiNi alloy was processed by Equal Channel Angular Extrusion (ECAE) at 500℃. After four passes ECAE treatment, microstructure of the alloy was refined but slightly inhomogeneous, to sub-micron scale, approximately 0.5~0.6 μm. Comparing with the solution-treated TiNi specimen, the martensitic transformations start (M_s) and peak temperatures (M_p) of TiNi specimens processed by ECAE were dramatically lowered. After ECAE treatment, the R-phase transformation was stimulated and separated from martensitic transformation, but occurred within a larger temperature range. Super-elasticity characteristics of TiNi alloy were tested by tensile loading and unloading cycles. The results revealed that at a tensile strain of 6% or smaller, TiNi alloy processed by four passes ECAE showed better super-elasticity, with less residual strain retained, than solution-treated sample. After tensile strain exceeded 6%, up to 8%, the maximum recoverable strain of TiNi alloy ECAE treated was decreased. Microstructure evolution and its effect on phase transformations and super-elasticity characteristics were discussed.

关键词:equal channel angular extrusion; TiNi shape memory alloy; R-phase transformation; martensitic transformation; super-elasticity;

【全文内容正在添加中】

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号