简介概要

Influence of Processing Parameters on Microstructural Evolution and Tensile Properties for 7075 Al Alloy Prepared by an ECAPBased SIMA Process

来源期刊:Acta Metallurgica Sinica2018年第4期

论文作者:Jin-Long Fu Hong-Jun Jiang Kai-Kun Wang

文章页码:337 - 350

摘    要:A modified strain-induced melt activation(SIMA) process consisting of homogenization, equal-channel angular pressing(ECAP) and subsequent heating to the semisolid temperatures was introduced to prepare the 7075 aluminum alloy with superior thixotropic behaviors. The effects of both the homogenization and the number of ECAP passes, as well as the isothermal temperatures on the microstructural evolution, were investigated. The results indicate that ideal microstructure wherein fine and globular solid grains surrounded by uniform liquid films can be achieved through ECAP deformation–recrystallization mechanism. Increasing the number of ECAP passes accelerates the recrystallization of strained grains,thus reducing the average grain size and improving the grain sphericity. Moreover, higher holding temperatures and prolonged soaking time can improve the growth of the solid grains. Two main coarsening mechanisms, viz. coalescence and Ostwald ripening, contribute to the growth of the solid grains simultaneously and independently. The tensile strength of the 7075 alloys after four-pass ECAP-based SIMA and T6 heat treatment is relatively lower than the as-received billet,while the elongation of SIMA processed samples is much higher than that of as-received ones. Increasing the number of ECAP passes improves the tensile strength for alloys with and without T6 treatment due to the fine grain strengthening mechanism.

详情信息展示

Influence of Processing Parameters on Microstructural Evolution and Tensile Properties for 7075 Al Alloy Prepared by an ECAPBased SIMA Process

Jin-Long Fu1,Hong-Jun Jiang2,Kai-Kun Wang1

1. School of Materials Science and Engineering, University of Science and Technology Beijing2. Wuxi Turbine Blade Co., Ltd

摘 要:A modified strain-induced melt activation(SIMA) process consisting of homogenization, equal-channel angular pressing(ECAP) and subsequent heating to the semisolid temperatures was introduced to prepare the 7075 aluminum alloy with superior thixotropic behaviors. The effects of both the homogenization and the number of ECAP passes, as well as the isothermal temperatures on the microstructural evolution, were investigated. The results indicate that ideal microstructure wherein fine and globular solid grains surrounded by uniform liquid films can be achieved through ECAP deformation–recrystallization mechanism. Increasing the number of ECAP passes accelerates the recrystallization of strained grains,thus reducing the average grain size and improving the grain sphericity. Moreover, higher holding temperatures and prolonged soaking time can improve the growth of the solid grains. Two main coarsening mechanisms, viz. coalescence and Ostwald ripening, contribute to the growth of the solid grains simultaneously and independently. The tensile strength of the 7075 alloys after four-pass ECAP-based SIMA and T6 heat treatment is relatively lower than the as-received billet,while the elongation of SIMA processed samples is much higher than that of as-received ones. Increasing the number of ECAP passes improves the tensile strength for alloys with and without T6 treatment due to the fine grain strengthening mechanism.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号