基于双目视觉深度感知的带式输送机煤量检测方法
来源期刊:煤炭学报2017年第S2期
论文作者:代伟 赵杰 杨春雨 马小平
文章页码:547 - 555
关键词:煤量检测;带式输送机;双目视觉;煤料识别;
摘 要:针对带式输送机存在煤料图像难以识别,以及煤料内部颗粒间隙非均匀随机分布导致体积难以计算的问题,提出了一种由运输煤料识别模块、运输煤料三维信息提取模块和运输煤料量计算模块3部分组成的基于双目视觉深度感知的带式输送机煤量检测方法。其中,运输煤料识别模块采用小波变换算法增强运输煤料图像,并结合K-means聚类算法分割出煤料图像;然后,运输煤料三维信息提取模块采用双目视觉方法获取煤料图像各点的深度信息,从而得到运输煤料三维点云信息;最后,运输煤料量计算模块将Delaunay算法与T-S模糊推理算法相结合,求得煤料体积,进而应用煤量计算公式实现煤量的检测。利用实际图像进行了实验研究,结果表明所提方法的有效性。
代伟1,2,赵杰1,杨春雨1,马小平1
1. 中国矿业大学信息与控制工程学院2. 东北大学流程工业综合自动化国家重点实验室
摘 要:针对带式输送机存在煤料图像难以识别,以及煤料内部颗粒间隙非均匀随机分布导致体积难以计算的问题,提出了一种由运输煤料识别模块、运输煤料三维信息提取模块和运输煤料量计算模块3部分组成的基于双目视觉深度感知的带式输送机煤量检测方法。其中,运输煤料识别模块采用小波变换算法增强运输煤料图像,并结合K-means聚类算法分割出煤料图像;然后,运输煤料三维信息提取模块采用双目视觉方法获取煤料图像各点的深度信息,从而得到运输煤料三维点云信息;最后,运输煤料量计算模块将Delaunay算法与T-S模糊推理算法相结合,求得煤料体积,进而应用煤量计算公式实现煤量的检测。利用实际图像进行了实验研究,结果表明所提方法的有效性。
关键词:煤量检测;带式输送机;双目视觉;煤料识别;