简介概要

基于GPNN算法的电网区间故障诊断策略

来源期刊:控制工程2021年第3期

论文作者:赵金勇 卢恒 于月平 段立春 李宁宁 刘春秀

文章页码:606 - 612

关键词:高斯;相似性;合并预测;电网子区间;故障诊断;

摘    要:为提升电网故障诊断算法的有效性,提出一种基于改进高斯概率神经网络(GPNN)核相似性合并预测的电网子区间故障诊断策略。首先,针对电网故障诊断中存在的数据不确定性现象,引入概率神经网络对其进行数据处理,同时为进一步提高概率神经网络对于数据不确定性的鲁棒处理效果,利用高斯算法对概率神经网络进行改进;其次,针对大型电网故障诊断的效率问题,提出一种子区间并行的故障诊断算法,对电网进行子区间操作,分别应用GPNN算法实现对电网故障子区域的诊断和最终诊断结果的融合;最后,通过仿真实验验证了所提算法在电网故障诊断中的有效性。

详情信息展示

基于GPNN算法的电网区间故障诊断策略

赵金勇1,卢恒2,于月平1,段立春1,李宁宁1,刘春秀1

1. 国网山东省电力公司德州供电公司2. 国网山东电力调控中心

摘 要:为提升电网故障诊断算法的有效性,提出一种基于改进高斯概率神经网络(GPNN)核相似性合并预测的电网子区间故障诊断策略。首先,针对电网故障诊断中存在的数据不确定性现象,引入概率神经网络对其进行数据处理,同时为进一步提高概率神经网络对于数据不确定性的鲁棒处理效果,利用高斯算法对概率神经网络进行改进;其次,针对大型电网故障诊断的效率问题,提出一种子区间并行的故障诊断算法,对电网进行子区间操作,分别应用GPNN算法实现对电网故障子区域的诊断和最终诊断结果的融合;最后,通过仿真实验验证了所提算法在电网故障诊断中的有效性。

关键词:高斯;相似性;合并预测;电网子区间;故障诊断;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号