基于GPNN算法的电网区间故障诊断策略
来源期刊:控制工程2021年第3期
论文作者:赵金勇 卢恒 于月平 段立春 李宁宁 刘春秀
文章页码:606 - 612
关键词:高斯;相似性;合并预测;电网子区间;故障诊断;
摘 要:为提升电网故障诊断算法的有效性,提出一种基于改进高斯概率神经网络(GPNN)核相似性合并预测的电网子区间故障诊断策略。首先,针对电网故障诊断中存在的数据不确定性现象,引入概率神经网络对其进行数据处理,同时为进一步提高概率神经网络对于数据不确定性的鲁棒处理效果,利用高斯算法对概率神经网络进行改进;其次,针对大型电网故障诊断的效率问题,提出一种子区间并行的故障诊断算法,对电网进行子区间操作,分别应用GPNN算法实现对电网故障子区域的诊断和最终诊断结果的融合;最后,通过仿真实验验证了所提算法在电网故障诊断中的有效性。
赵金勇1,卢恒2,于月平1,段立春1,李宁宁1,刘春秀1
1. 国网山东省电力公司德州供电公司2. 国网山东电力调控中心
摘 要:为提升电网故障诊断算法的有效性,提出一种基于改进高斯概率神经网络(GPNN)核相似性合并预测的电网子区间故障诊断策略。首先,针对电网故障诊断中存在的数据不确定性现象,引入概率神经网络对其进行数据处理,同时为进一步提高概率神经网络对于数据不确定性的鲁棒处理效果,利用高斯算法对概率神经网络进行改进;其次,针对大型电网故障诊断的效率问题,提出一种子区间并行的故障诊断算法,对电网进行子区间操作,分别应用GPNN算法实现对电网故障子区域的诊断和最终诊断结果的融合;最后,通过仿真实验验证了所提算法在电网故障诊断中的有效性。
关键词:高斯;相似性;合并预测;电网子区间;故障诊断;