简介概要

图的周长

来源期刊:东北大学学报(自然科学版)1996年第5期

论文作者:党恺谦

关键词:2连通;圈;图;H图;

摘    要:设G为n阶2连通图,D(x)={y|y∈V(G),d(x,y)≤2},(d*1,d*2,⒅,d*j,⒅,d*|D(x)|)为D(x)中所有顶点的度排成的非减度序列,d*d(x)为(d*1,d*2,⒅,d*j,⒅,d*|D(x)|)中当j=d(x)时的度.δ0=min{max(d(x),d(y)}|x,y∈V(G),d(x,y)=2},δi=min{d*d(x)|x∈D(δi-1)},D(δi-1)={x|x∈V(G),d(x)≥δi-1},i=1,2,⒅,k.本文证明(i)若δ0>δ1,则c(G)≥min{n,2δ0};(i)若δ0<δ1<δ2<⒅<δk-1≤δk,k≥1,则c(G)≥min{n,2δk}

详情信息展示

图的周长

党恺谦

东北大学理学院

摘 要:设G为n阶2连通图,D(x)={y|y∈V(G),d(x,y)≤2},(d*1,d*2,⒅,d*j,⒅,d*|D(x)|)为D(x)中所有顶点的度排成的非减度序列,d*d(x)为(d*1,d*2,⒅,d*j,⒅,d*|D(x)|)中当j=d(x)时的度.δ0=min{max(d(x),d(y)}|x,y∈V(G),d(x,y)=2},δi=min{d*d(x)|x∈D(δi-1)},D(δi-1)={x|x∈V(G),d(x)≥δi-1},i=1,2,⒅,k.本文证明(i)若δ0>δ1,则c(G)≥min{n,2δ0};(i)若δ0<δ1<δ2<⒅<δk-1≤δk,k≥1,则c(G)≥min{n,2δk}

关键词:2连通;圈;图;H图;

<上一页 1 下一页 >