改进集成深层自编码器在轴承故障诊断中的应用
来源期刊:控制与决策2021年第1期
论文作者:陈志刚 杜小磊 王衍学 张楠
关键词:滚动轴承;故障诊断;深层自编码器;集成学习;
摘 要:针对滚动轴承振动信号故障特征难以自动提取和故障类别难以自动准确识别的问题,提出一种改进集成深层自编码器(IEDAE)方法.首先,改进自编码器的损失函数并设计3种小波卷积自编码器;其次,利用区分自编码器、小波卷积自编码器等5种自编码器构造相应的深层自编码器,并设计"跨层"连接以缓解深层网络的梯度消失现象,实现对轴承振动信号的无监督预训练和有监督微调;最后,通过加权平均法输出识别结果,以保证诊断结果的准确性和稳定性.实验结果表明,改进集成深层自编码器方法能有效地对滚动轴承进行多种工况和多种故障程度的识别,较好地摆脱了对人工特征提取的依赖,特征提取能力和识别能力优于现有其他方法.
陈志刚1,2,杜小磊1,2,王衍学1,3,张楠1
1. 北京建筑大学机电与车辆工程学院2. 北京市建筑安全监测工程技术研究中心3. 北京建筑大学城市轨道交通车辆服役性能保障北京市重点实验室
摘 要:针对滚动轴承振动信号故障特征难以自动提取和故障类别难以自动准确识别的问题,提出一种改进集成深层自编码器(IEDAE)方法.首先,改进自编码器的损失函数并设计3种小波卷积自编码器;其次,利用区分自编码器、小波卷积自编码器等5种自编码器构造相应的深层自编码器,并设计"跨层"连接以缓解深层网络的梯度消失现象,实现对轴承振动信号的无监督预训练和有监督微调;最后,通过加权平均法输出识别结果,以保证诊断结果的准确性和稳定性.实验结果表明,改进集成深层自编码器方法能有效地对滚动轴承进行多种工况和多种故障程度的识别,较好地摆脱了对人工特征提取的依赖,特征提取能力和识别能力优于现有其他方法.
关键词:滚动轴承;故障诊断;深层自编码器;集成学习;