简介概要

基于粒子群和BP混合优化的采煤机故障诊断分类方法研究

来源期刊:矿山机械2011年第5期

论文作者:赵栓峰

文章页码:9 - 12

关键词:采煤机;粒子群;BP网络;故障诊断;

摘    要:故障诊断的本质是信号的特征提取与分类,BP神经网络是典型的一种分类方法。针对传统的BP算法易形成局部极小值,缺乏全局搜索性的缺点,利用粒子群算法可以在复杂、多峰、非线性及不可微的空间中实现快速、高效的全局搜索的特点,结合传统BP算法,提出一种基于PSO-BP混合训练神经网络的新方法。该算法首先利用粒子群算法的全局搜索能力对BP网络的权值进行优化,同时引入粒子群熵的概念对粒子群体中个体的多样性进行度量,当粒子群熵的估计值超过某一设定阀值时,用BP算法进行神经网络的训练。采用采煤机的轴承故障数据集对PSO-BP算法进行验证,证明该方法能够对采煤机的故障进行诊断。

详情信息展示

基于粒子群和BP混合优化的采煤机故障诊断分类方法研究

赵栓峰

西安科技大学机械工程学院

摘 要:故障诊断的本质是信号的特征提取与分类,BP神经网络是典型的一种分类方法。针对传统的BP算法易形成局部极小值,缺乏全局搜索性的缺点,利用粒子群算法可以在复杂、多峰、非线性及不可微的空间中实现快速、高效的全局搜索的特点,结合传统BP算法,提出一种基于PSO-BP混合训练神经网络的新方法。该算法首先利用粒子群算法的全局搜索能力对BP网络的权值进行优化,同时引入粒子群熵的概念对粒子群体中个体的多样性进行度量,当粒子群熵的估计值超过某一设定阀值时,用BP算法进行神经网络的训练。采用采煤机的轴承故障数据集对PSO-BP算法进行验证,证明该方法能够对采煤机的故障进行诊断。

关键词:采煤机;粒子群;BP网络;故障诊断;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号