基于粒子群和BP混合优化的采煤机故障诊断分类方法研究
来源期刊:矿山机械2011年第5期
论文作者:赵栓峰
文章页码:9 - 12
关键词:采煤机;粒子群;BP网络;故障诊断;
摘 要:故障诊断的本质是信号的特征提取与分类,BP神经网络是典型的一种分类方法。针对传统的BP算法易形成局部极小值,缺乏全局搜索性的缺点,利用粒子群算法可以在复杂、多峰、非线性及不可微的空间中实现快速、高效的全局搜索的特点,结合传统BP算法,提出一种基于PSO-BP混合训练神经网络的新方法。该算法首先利用粒子群算法的全局搜索能力对BP网络的权值进行优化,同时引入粒子群熵的概念对粒子群体中个体的多样性进行度量,当粒子群熵的估计值超过某一设定阀值时,用BP算法进行神经网络的训练。采用采煤机的轴承故障数据集对PSO-BP算法进行验证,证明该方法能够对采煤机的故障进行诊断。
赵栓峰
西安科技大学机械工程学院
摘 要:故障诊断的本质是信号的特征提取与分类,BP神经网络是典型的一种分类方法。针对传统的BP算法易形成局部极小值,缺乏全局搜索性的缺点,利用粒子群算法可以在复杂、多峰、非线性及不可微的空间中实现快速、高效的全局搜索的特点,结合传统BP算法,提出一种基于PSO-BP混合训练神经网络的新方法。该算法首先利用粒子群算法的全局搜索能力对BP网络的权值进行优化,同时引入粒子群熵的概念对粒子群体中个体的多样性进行度量,当粒子群熵的估计值超过某一设定阀值时,用BP算法进行神经网络的训练。采用采煤机的轴承故障数据集对PSO-BP算法进行验证,证明该方法能够对采煤机的故障进行诊断。
关键词:采煤机;粒子群;BP网络;故障诊断;