简介概要

基于云PSO的RVM入侵检测

来源期刊:控制与决策2015年第4期

论文作者:李国栋 胡建平 夏克文

文章页码:698 - 702

关键词:入侵检测;相关向量机;云粒子群优化;

摘    要:入侵检测可为计算机网络信息提供安全保障,在其方法研究中,由于相关向量机(RVM)具有高稀疏性且预测中使用概率因素,在网络入侵检测中优于支持向量机.然而RVM的核函数参数是经验估计的,为此,提出一种基于云模型的粒子群优化算法的RVM方法,即采用云粒子群算法确定RVM的核参数,构建RVM分类模型,再采用一对一分类方法进行多类检测分类.经入侵检测实验研究,所得结果表明所提出的方法优于基于常规相关向量机的检测方法,且具有更高的入侵检测精度.

详情信息展示

基于云PSO的RVM入侵检测

李国栋1,胡建平1,夏克文2

1. 天津城建大学计算机与信息工程学院2. 河北工业大学信息工程学院

摘 要:入侵检测可为计算机网络信息提供安全保障,在其方法研究中,由于相关向量机(RVM)具有高稀疏性且预测中使用概率因素,在网络入侵检测中优于支持向量机.然而RVM的核函数参数是经验估计的,为此,提出一种基于云模型的粒子群优化算法的RVM方法,即采用云粒子群算法确定RVM的核参数,构建RVM分类模型,再采用一对一分类方法进行多类检测分类.经入侵检测实验研究,所得结果表明所提出的方法优于基于常规相关向量机的检测方法,且具有更高的入侵检测精度.

关键词:入侵检测;相关向量机;云粒子群优化;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号