铝合金薄壁件的铣削加工颤振的建模与识别
来源期刊:机械设计与制造2017年第5期
论文作者:代艳霞
文章页码:109 - 112
关键词:薄壁件;铣削颤振;振动监测;支持向量机;
摘 要:选取力信号和加速度信号来预测薄壁件的颤振状态,分别提取铣削力信号的实时方差特征与加速度信号的小波能量特征,并采用该两个特征量构建颤振信号识别特征量。用测力仪、加速度传感器等设备搭建了铝合金薄壁件铣削颤振实验台,在不同切削参数条件下设计了正交实验分组。区别于以往的二分类SVM模型,文中设计了基于二叉树决策的多分类SVM模型,并结合信号实时方差与小波能量特征,将机床加工状态分为稳定阶段、趋于颤振和颤振阶段这三种状态,实验获得的160组信号特征量数据分别用来完成多分类SVM模型的训练和检验。结果表明:在切削参数下,设计的SVM识别模型具有96.67%的准确率,能在工程实践中达到颤振预测的目的。
代艳霞
宜宾职业技术学院现代制造系
摘 要:选取力信号和加速度信号来预测薄壁件的颤振状态,分别提取铣削力信号的实时方差特征与加速度信号的小波能量特征,并采用该两个特征量构建颤振信号识别特征量。用测力仪、加速度传感器等设备搭建了铝合金薄壁件铣削颤振实验台,在不同切削参数条件下设计了正交实验分组。区别于以往的二分类SVM模型,文中设计了基于二叉树决策的多分类SVM模型,并结合信号实时方差与小波能量特征,将机床加工状态分为稳定阶段、趋于颤振和颤振阶段这三种状态,实验获得的160组信号特征量数据分别用来完成多分类SVM模型的训练和检验。结果表明:在切削参数下,设计的SVM识别模型具有96.67%的准确率,能在工程实践中达到颤振预测的目的。
关键词:薄壁件;铣削颤振;振动监测;支持向量机;