基于SVM模型的充填体强度与采场稳定性需求智能匹配研究
来源期刊:中国矿业2019年第11期
论文作者:白春红
文章页码:104 - 108
关键词:充填采矿法;支持向量机;充填体强度;智能匹配;
摘 要:为解决矿山充填体强度的设计问题,提高矿山充填体的强度动态调整能力,本文通过调查国内百座矿山现场充填体强度的实际数据,采用支持向量机(SVM)方法建立充填体强度智能预测模型,对70组训练样本数据进行训练,采用BP神经网络模型与SVM模型的预测结果进行比较。结果表明:SVM预测模型的最大误差为3.52%,平均误差为2.41%;BP预测模型的最大误差为10.98%,平均误差为7.01%;SVM模型比BP模型预测精度更高,误差更小。采用SVM模型对三山岛金矿充填体强度进行预测,一步骤回采矿房充填体强度1.02MPa,推荐灰砂比1∶12,二步骤回采矿房充填体强度0.86 MPa,推荐灰砂比1∶16。现场采场充填效果良好,未发生充填体失稳现象。基于SVM的充填体强度智能匹配模型能够在满足采场稳定性的前提下,减少充填成本,提高矿山的经济效益。
白春红
阜新高等专科学校计算机与信息工程系
摘 要:为解决矿山充填体强度的设计问题,提高矿山充填体的强度动态调整能力,本文通过调查国内百座矿山现场充填体强度的实际数据,采用支持向量机(SVM)方法建立充填体强度智能预测模型,对70组训练样本数据进行训练,采用BP神经网络模型与SVM模型的预测结果进行比较。结果表明:SVM预测模型的最大误差为3.52%,平均误差为2.41%;BP预测模型的最大误差为10.98%,平均误差为7.01%;SVM模型比BP模型预测精度更高,误差更小。采用SVM模型对三山岛金矿充填体强度进行预测,一步骤回采矿房充填体强度1.02MPa,推荐灰砂比1∶12,二步骤回采矿房充填体强度0.86 MPa,推荐灰砂比1∶16。现场采场充填效果良好,未发生充填体失稳现象。基于SVM的充填体强度智能匹配模型能够在满足采场稳定性的前提下,减少充填成本,提高矿山的经济效益。
关键词:充填采矿法;支持向量机;充填体强度;智能匹配;