简介概要

基于特征融合与分类器在线学习的目标跟踪算法

来源期刊:控制与决策2017年第9期

论文作者:胡秀华 郭雷 李晖晖

文章页码:1591 - 1598

关键词:目标跟踪;特征融合;可信度;在线学习;

摘    要:为了解决目标在复杂环境下表观变化引起的跟踪漂移问题,提出一种基于多特征融合与分类器在线学习的目标跟踪算法.该算法利用不同表观特征训练子分类器,通过构建损失函数求得各子分类器可信度,进而加权融合子预测结果,得到当前帧最佳目标状态估计;同时,依据最近-最远边界原则和协同训练理论粗更新训练样本集,并通过精选择准则得到更具代表性的训练样本集,实现子分类器自适应更新.实验结果表明,所提出的算法在多种典型测试场景中都能取得较鲁棒的跟踪效果.

详情信息展示

基于特征融合与分类器在线学习的目标跟踪算法

胡秀华,郭雷,李晖晖

西北工业大学自动化学院

摘 要:为了解决目标在复杂环境下表观变化引起的跟踪漂移问题,提出一种基于多特征融合与分类器在线学习的目标跟踪算法.该算法利用不同表观特征训练子分类器,通过构建损失函数求得各子分类器可信度,进而加权融合子预测结果,得到当前帧最佳目标状态估计;同时,依据最近-最远边界原则和协同训练理论粗更新训练样本集,并通过精选择准则得到更具代表性的训练样本集,实现子分类器自适应更新.实验结果表明,所提出的算法在多种典型测试场景中都能取得较鲁棒的跟踪效果.

关键词:目标跟踪;特征融合;可信度;在线学习;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号