随机有限集理论及其在多目标跟踪中的应用和实现
来源期刊:控制与决策2019年第2期
论文作者:彭华甫 黄高明 田威
文章页码:225 - 232
关键词:随机有限集;多目标跟踪;贝叶斯估计;高斯混合;序贯蒙特卡罗;多传感器;时空配准;
摘 要:梳理了随机有限集(RFS)的理论基础和发展脉络,重点对其在多目标跟踪中应用和实现的难点问题进行详细分析.首先针对单传感器情形,深入讨论RFS的几类典型近似技术,包括:概率假设密度(PHD)滤波器、势概率假设密度(CPHD)滤波器、多伯努利(MeMBer)滤波器以及泛化标签多伯努利(GLMB)滤波器,对其发展脉络进行分析,并对高斯混合(GM)及序贯蒙特卡罗(SMC)实现中面临的问题进行研究;其次,针对多传感器情形,介绍时空配准问题的处理方法,并分别从集中式、分布式融合两个方面对基于RFS多传感器多目标跟踪技术进行分析;再次,对RFS滤波器在实际应用中面临的困难及挑战进行分析;最后,基于现有研究进展,提出RFS在多目标跟踪领域未来需重点关注及研究的方向.
彭华甫1,2,黄高明1,田威1
1. 海军工程大学电子工程学院2. 解放军92773部队
摘 要:梳理了随机有限集(RFS)的理论基础和发展脉络,重点对其在多目标跟踪中应用和实现的难点问题进行详细分析.首先针对单传感器情形,深入讨论RFS的几类典型近似技术,包括:概率假设密度(PHD)滤波器、势概率假设密度(CPHD)滤波器、多伯努利(MeMBer)滤波器以及泛化标签多伯努利(GLMB)滤波器,对其发展脉络进行分析,并对高斯混合(GM)及序贯蒙特卡罗(SMC)实现中面临的问题进行研究;其次,针对多传感器情形,介绍时空配准问题的处理方法,并分别从集中式、分布式融合两个方面对基于RFS多传感器多目标跟踪技术进行分析;再次,对RFS滤波器在实际应用中面临的困难及挑战进行分析;最后,基于现有研究进展,提出RFS在多目标跟踪领域未来需重点关注及研究的方向.
关键词:随机有限集;多目标跟踪;贝叶斯估计;高斯混合;序贯蒙特卡罗;多传感器;时空配准;