微量稀土元素掺杂引起Fe-Ga合金大磁致伸缩性能的研究进展
来源期刊:材料导报2020年第7期
论文作者:王瑞 赵宣 赵丽娟 闫静 田晓 姚占全
文章页码:7146 - 7153
关键词:Fe-Ga合金;磁致伸缩性能;稀土元素;元素掺杂;
摘 要:磁致伸缩材料是一类新型智能材料,在机器人、传感器和位移控制器等领域有重要的应用价值。与传统磁致伸缩材料和已商业化巨磁致伸缩材料相比,新型Fe-Ga磁致伸缩材料具有更易实用化的优良特性和应用前景,例如低磁场下应变高、力学性能好、对温度的依赖性低、价格低廉等,因而Fe-Ga合金成为凝聚态物理和材料科学领域的研究热点。早期关于Fe-Ga合金的研究主要集中在单晶Fe-Ga合金,但其制备工艺复杂、成本高,难以广泛应用。为拓宽Fe-Ga合金的应用范围,人们开始关注多晶Fe-Ga合金。然而,采用常规熔炼法制备的多晶Fe-Ga合金磁致伸缩系数很低,限制了其实际应用。因此,提高多晶Fe-Ga合金的磁致伸缩性能成为该类合金能广泛应用的关键。合金结构决定合金性能,合金结构又与合金成分和制备工艺密切相关。为提高多晶Fe-Ga合金磁致伸缩系数,研究者做了大量工作。近年来,具有特殊4f电子层结构的稀土元素因具有优异的磁学性质而引起人们的广泛关注。人们将微量稀土元素Tb、Dy、Ce、Y、Sm、Pr等掺杂到Fe-Ga合金中,发现Fe-Ga合金的磁致伸缩性能得到明显的改善。然而到目前为止,有关稀土掺杂Fe-Ga合金的磁致伸缩机制仍不一致。一些研究者认为磁致伸缩性能的改善是由于稀土掺杂导致Fe-Ga合金形成富稀土相,也有研究者认为主要是由于稀土掺杂使合金沿〈100〉择优取向。近年来一些研究者认为,大磁致伸缩主要源于稀土原子进入Fe-Ga合金的A2基体中引起的大四方畸变。但是稀土掺杂如何使Fe-Ga合金中A2基体产生大四方畸变以及掺杂稀土与A2基体中四方纳米异质结构modified DO3相是如何作用的,这些问题仍不清楚。本文首先分析了人们选择稀土元素掺杂Fe-Ga合金的原因;然后分析了稀土元素掺杂对Fe-Ga合金性能的影响;最后详细综述了稀土元素掺杂引起Fe-Ga合金大磁致伸缩性能的理论机制,同时展望了该类合金未来的发展方向。
王瑞1,赵宣1,赵丽娟1,闫静1,田晓1,姚占全2
1. 内蒙古师范大学物理与电子信息学院功能材料物理与化学自治区重点实验室2. 内蒙古农业大学水利与土木建筑工程学院
摘 要:磁致伸缩材料是一类新型智能材料,在机器人、传感器和位移控制器等领域有重要的应用价值。与传统磁致伸缩材料和已商业化巨磁致伸缩材料相比,新型Fe-Ga磁致伸缩材料具有更易实用化的优良特性和应用前景,例如低磁场下应变高、力学性能好、对温度的依赖性低、价格低廉等,因而Fe-Ga合金成为凝聚态物理和材料科学领域的研究热点。早期关于Fe-Ga合金的研究主要集中在单晶Fe-Ga合金,但其制备工艺复杂、成本高,难以广泛应用。为拓宽Fe-Ga合金的应用范围,人们开始关注多晶Fe-Ga合金。然而,采用常规熔炼法制备的多晶Fe-Ga合金磁致伸缩系数很低,限制了其实际应用。因此,提高多晶Fe-Ga合金的磁致伸缩性能成为该类合金能广泛应用的关键。合金结构决定合金性能,合金结构又与合金成分和制备工艺密切相关。为提高多晶Fe-Ga合金磁致伸缩系数,研究者做了大量工作。近年来,具有特殊4f电子层结构的稀土元素因具有优异的磁学性质而引起人们的广泛关注。人们将微量稀土元素Tb、Dy、Ce、Y、Sm、Pr等掺杂到Fe-Ga合金中,发现Fe-Ga合金的磁致伸缩性能得到明显的改善。然而到目前为止,有关稀土掺杂Fe-Ga合金的磁致伸缩机制仍不一致。一些研究者认为磁致伸缩性能的改善是由于稀土掺杂导致Fe-Ga合金形成富稀土相,也有研究者认为主要是由于稀土掺杂使合金沿〈100〉择优取向。近年来一些研究者认为,大磁致伸缩主要源于稀土原子进入Fe-Ga合金的A2基体中引起的大四方畸变。但是稀土掺杂如何使Fe-Ga合金中A2基体产生大四方畸变以及掺杂稀土与A2基体中四方纳米异质结构modified DO3相是如何作用的,这些问题仍不清楚。本文首先分析了人们选择稀土元素掺杂Fe-Ga合金的原因;然后分析了稀土元素掺杂对Fe-Ga合金性能的影响;最后详细综述了稀土元素掺杂引起Fe-Ga合金大磁致伸缩性能的理论机制,同时展望了该类合金未来的发展方向。
关键词:Fe-Ga合金;磁致伸缩性能;稀土元素;元素掺杂;