简介概要

基于PCA-PSO-ELM的瓦斯涌出量预测

来源期刊:湖南科技大学学报自然科学版2020年第4期

论文作者:王彦彬

关键词:瓦斯涌出量预测;主成分分析;粒子群算法;极限学习机;十折交叉验证;

摘    要:为了更加准确有效地预测瓦斯涌出量,提出采用主成分分析结合粒子群算法、极限学习机的瓦斯涌出量预测方法,其中极限学习机中隐含层节点数量及激活函数的类型由粒子群算法进行组合优化.实验综合考虑影响回采工作面瓦斯涌出量的13个因素对沈阳某煤矿历史数据进行分析,首先采用主成分分析对数据进行降维,消除指标数据之间的相关性,将降维后的数据划分为训练集和测试集2部分,设计了粒子群算法的惯性权重,并由粒子群算法结合十折交叉验证对极限学习机的2个参数进行优化,选择最优参数组合建立预测模型,通过对测试集瓦斯涌出量进行预测,其均方误差为0.108 3,优于采用极限学习机及随机森林的预测结果.

详情信息展示

基于PCA-PSO-ELM的瓦斯涌出量预测

王彦彬

辽宁工程技术大学工商管理学院

摘 要:为了更加准确有效地预测瓦斯涌出量,提出采用主成分分析结合粒子群算法、极限学习机的瓦斯涌出量预测方法,其中极限学习机中隐含层节点数量及激活函数的类型由粒子群算法进行组合优化.实验综合考虑影响回采工作面瓦斯涌出量的13个因素对沈阳某煤矿历史数据进行分析,首先采用主成分分析对数据进行降维,消除指标数据之间的相关性,将降维后的数据划分为训练集和测试集2部分,设计了粒子群算法的惯性权重,并由粒子群算法结合十折交叉验证对极限学习机的2个参数进行优化,选择最优参数组合建立预测模型,通过对测试集瓦斯涌出量进行预测,其均方误差为0.108 3,优于采用极限学习机及随机森林的预测结果.

关键词:瓦斯涌出量预测;主成分分析;粒子群算法;极限学习机;十折交叉验证;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号