简介概要

Object oriented land cover classification using ALS and GeoEye imagery over mining area

来源期刊:中国有色金属学报(英文版)2011年第z3期

论文作者:YU Hai-yang CHENG Gang GE Xiao-san LU Xiao-ping

文章页码:733 - 737

Key words:airborne laser scanning; GeoEye; nDSM; object oriented classification; mining areas

Abstract: An object oriented coal mining land cover classification method based on semantically meaningful image segmentation and image combination of GeoEye imagery and airborne laser scanning (ALS) data was presented. First, DEM, DSM and nDSM (normalized Digital Surface Model, nDSM) were extracted from ALS data. The GeoEye imagery and DSM data were combined to create segmented objects based on neighbor regions merge method. Then 10 kinds of objects were extracted. Different kinds of vegetation objects, including crop, grass, shrub and tree, can be extracted by using NDVI and height value of nDSM. Water and coal pile field was extracted by using NDWI and the standard deviation of DSM method. Height differences also can be used to distinguish buildings from road and vacant land, and accurate building contour information can be extracted by using relationship of neighbor objects and morphological method. The test result shows that the total classification accuracy of the presented method is 90.78% and the kappa coefficient is 0.891 4.

详情信息展示

Object oriented land cover classification using ALS and GeoEye imagery over mining area

YU Hai-yang, CHENG Gang, GE Xiao-san, LU Xiao-ping

(Key Laboratory of Mine Spatial Information Technologies of State Bureau of Surveying and Mapping,
Henan Polytechnic University, Jiaozuo 454000, China)

Abstract:An object oriented coal mining land cover classification method based on semantically meaningful image segmentation and image combination of GeoEye imagery and airborne laser scanning (ALS) data was presented. First, DEM, DSM and nDSM (normalized Digital Surface Model, nDSM) were extracted from ALS data. The GeoEye imagery and DSM data were combined to create segmented objects based on neighbor regions merge method. Then 10 kinds of objects were extracted. Different kinds of vegetation objects, including crop, grass, shrub and tree, can be extracted by using NDVI and height value of nDSM. Water and coal pile field was extracted by using NDWI and the standard deviation of DSM method. Height differences also can be used to distinguish buildings from road and vacant land, and accurate building contour information can be extracted by using relationship of neighbor objects and morphological method. The test result shows that the total classification accuracy of the presented method is 90.78% and the kappa coefficient is 0.891 4.

Key words:airborne laser scanning; GeoEye; nDSM; object oriented classification; mining areas

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号