Selective depression behavior of guar gum on talc-type scheelite flotation
来源期刊:International Journal of Minerals Metallurgy and Materials2017年第8期
论文作者:Yong-zhong Zhang Guo-hua Gu Xiang-bin Wu Kai-le Zhao
文章页码:857 - 862
摘 要:The depression behavior and mechanism of guar gum on talc-type scheelite flotation were systematically investigated by flotation experiments, adsorption tests, zeta-potential measurements, and infrared spectroscopic analyses. The flotation results for monominerals, mixed minerals, and actual mineral samples indicated that guar gum exhibited much higher selective depression for talc than for scheelite. Bench-scale closed-circuit tests showed that a tungsten concentrate with a WO3 grade of 51.43% and a WO3 recovery of 76.18% was obtained. Adsorption tests, zeta-potential measurements, and infrared spectral analyses confirmed that guar gum absorbed more strongly onto the talc surface than onto the scheelite surface because of chemisorption between guar gum and talc. This chemisorption is responsible for the guar gum’s highly selective depression for talc and small depression for scheelite. The flotation results provide technical support for talc-type scheelite flotation.
Yong-zhong Zhang1,2,Guo-hua Gu3,Xiang-bin Wu1,Kai-le Zhao3
1. School of Geosciences and Info-Physics, Central South University2. Department of Land and Resources of Hunan Province3. School of Minerals Processing and Bioengineering, Central South University
摘 要:The depression behavior and mechanism of guar gum on talc-type scheelite flotation were systematically investigated by flotation experiments, adsorption tests, zeta-potential measurements, and infrared spectroscopic analyses. The flotation results for monominerals, mixed minerals, and actual mineral samples indicated that guar gum exhibited much higher selective depression for talc than for scheelite. Bench-scale closed-circuit tests showed that a tungsten concentrate with a WO3 grade of 51.43% and a WO3 recovery of 76.18% was obtained. Adsorption tests, zeta-potential measurements, and infrared spectral analyses confirmed that guar gum absorbed more strongly onto the talc surface than onto the scheelite surface because of chemisorption between guar gum and talc. This chemisorption is responsible for the guar gum’s highly selective depression for talc and small depression for scheelite. The flotation results provide technical support for talc-type scheelite flotation.
关键词: