Tb3NiSi2合金磁相变与磁热性能研究
来源期刊:稀有金属2021年第2期
论文作者:陈湘 倪超 赵明骅
文章页码:169 - 176
关键词:Tb3NiSi2合金;磁相变;磁热效应;
摘 要:依据X射线衍射(XRD)与等温磁化曲线和等磁场变温磁化曲线,主要研究了Tb3NiSi2合金相结构与磁性相变和磁热性能。XRD表明,采用800℃保温14天,然后炉冷至室温的热处理方法制备的R3NiSi2(R=Tb,Dy,Ho,Er)合金中,主相均为Gd3NiSi2型正交结构(空间群:Pnma,No.62)相,但杂相R5Si3含量存在差异,其规律是从Er到Tb,含量依次减少,Tb3NiSi2合金样品基本为一个单相,其相应晶格常数分别为a=1.1240(8)nm,b=0.41009(8)nm,c=1.12058(1)nm。等温磁化曲线显示在50~300 K温度范围内,Tb3NiSi2合金仅展现出铁磁-顺磁相变,并没有在130,82,66,53 K等观察到相关文献报道的多重的反常反铁磁态-铁磁态(AFM-FM)相变。0.01 T磁场下的磁化强度对温度求导曲线(d M/d T)和0~2 T磁场下的Arrott图结果证实合金铁磁-顺磁二级磁相变居里温度(Tc)=88 K。居里外斯定理拟合表明合金中Tb3+粒子的有效磁矩为9.90μB(μB为玻尔磁子),同期望值μeff/Tb3+=g(J (J+1))1/2=9.72μB基本一致。在磁热性方面,Tb3NiSi2合金在0~2 T磁场范围内,低场响应性较差,铁磁态分子的有效磁矩远低于顺磁分子有效磁矩,最大磁熵变(-ΔSM,max)为3.2 J·kg-1·K-1;在对应的半高宽温跨(δTFWHM)=35.5K范围内,相对制冷量为113 J·kg-1。
网络首发时间: 2019-11-29 15:46
稀有金属 2021,45(02),169-176 DOI:10.13373/j.cnki.cjrm.xy19060014
陈湘 倪超 赵明骅
内江师范学院物理与电子信息工程学院
依据X射线衍射(XRD)与等温磁化曲线和等磁场变温磁化曲线,主要研究了Tb3NiSi2合金相结构与磁性相变和磁热性能。XRD表明,采用800℃保温14天,然后炉冷至室温的热处理方法制备的R3NiSi2(R=Tb,Dy,Ho,Er)合金中,主相均为Gd3NiSi2型正交结构(空间群:Pnma,No.62)相,但杂相R5Si3含量存在差异,其规律是从Er到Tb,含量依次减少,Tb3NiSi2合金样品基本为一个单相,其相应晶格常数分别为a=1.1240(8)nm,b=0.41009(8)nm,c=1.12058(1)nm。等温磁化曲线显示在50~300 K温度范围内,Tb3NiSi2合金仅展现出铁磁-顺磁相变,并没有在130,82,66,53 K等观察到相关文献报道的多重的反常反铁磁态-铁磁态(AFM-FM)相变。0.01 T磁场下的磁化强度对温度求导曲线(d M/d T)和0~2 T磁场下的Arrott图结果证实合金铁磁-顺磁二级磁相变居里温度(Tc)=88 K。居里外斯定理拟合表明合金中Tb3+粒子的有效磁矩为9.90μB(μB为玻尔磁子),同期望值μeff/Tb3+=g(J (J+1))1/2=9.72μB基本一致。在磁热性方面,Tb3NiSi2合金在0~2 T磁场范围内,低场响应性较差,铁磁态分子的有效磁矩远低于顺磁分子有效磁矩,最大磁熵变(-ΔSM,max)为3.2 J·kg-1·K-1;在对应的半高宽温跨(δTFWHM)=35.5K范围内,相对制冷量为113 J·kg-1。
中图分类号: TG132
作者简介:陈湘(1977-),男,四川内江人,博士,教授,研究方向:相图相结构、稀土磁性材料,电话:0832-2340497,E-mail:gx-ucx@163.com;
收稿日期:2019-06-12
基金:四川省科技计划项目(2017JY181)资助;
Chen Xiang Ni Chao Zhao Minghua
College of Physics and Electronic Information Engineering,Neijiang Normal University
Abstract:
In R3NiSi2 alloys,all atoms occupy 4C position,which may lead to abundant magnetic phenomena.R3NiSi2 alloys have attracted wide attention of researchers.In this work,the phase formation and crystal structure of R3NiSi2 alloys(R=Tb,Dy,Ho and Er)were investigated using X-ray powder diffraction(XRD),and the magnetic phase transition and magnetocaloric effect(MCE) of Tb3NiSi2 alloy were studied based on magnetic susceptibility and magnetization measurements.The room temperature XRD patterns showed that the main phases were Gd3 NiSi2-type orthogonal structure phase(space group:Pnma, No.62) in R3NiSi2 alloys(R=Tb,Dy,Ho and Er) annealed at 800℃ for 14 d and cooled down to room temperature in furnace,but the purity amounts of R5 Si3 phase gradually increased from Tb to Er.At the same time,the Rietveld refinement of the powder XRD pattern showed the crystal parameters a,b and c of R3NiSi2 alloys decreased linearly in turn from R=Tb to Er.Because the Tb3NiSi2 alloy was almost a single phase with a-1.1240(8) nm,b=0.41009(8) nm and c=1.12058(1) nm.The temperature dependences of DC magnetization of Tb3NiSi2 alloy(M-T curve) measured by the zero-field-cooled(ZFC) heating and field-cooled cooling(FC) methods in different magnetic fields showed that there was only a ferromagnetic-paramagnetic transition in the temperature range from 50 to 300 K,and the reported abnormal antiferromagnetic(AFM)-ferromagnetic(FM) phase transitions were observed at 130,82,66 and 53 K,respectively.The derivative curve of magnetiation versus temperature(dM/dT) data in a field of 0.1 T and Arrott plots in a field change of 0-2 T indicated that the magnetic order transition in Tb3NiSi2 was a typical second order with Curie temperature(Tc)=88 K.The M-T curve of ZFC measurement mode did not coincide with that of FC measurement mode,especially in 0.01 T magnetic field.This phenomenon was similar to that in TbNi4 Si alloy,and the main source was the competition between AFM and FM in the ground state alloy when the temperature is lower than Tc.With the increasing in magnetic field,the difference decreased.The ZFC and FCM-T curves coincided basically in a 1 T field,which indicated that the AFM state in Tb3NiSi2 alloy was easily induced to FM state by magnetic field.The inverses of magnetic susceptibility dependence of temperature in different fields derived from M-T data of ZFC in the high temperature PM region(150~300 K) obeyed the Curie-Weiss law.The fitting result showed the molecule effective magnetic moments of Tb3NiSi2 alloy were 17.06 and17.28 in 0.01 and 0.2 T fields.Assuming that the Ni atom was nonmagnetic,the effective magnetic moments of Tb3+ ions were 9.85μB and 9.97μB,which were consistent with the expected value 9.72μB.This result confirmed that nonmagnetic or weak magnetic properties of Ni atoms in Tb3NiSi2 alloy.In fact,in many R-Ni-Si(R=heavy rare earth elements) ternary alloys,Ni atoms exhibited non-magnetic or weak magnetic properties,but the physical mechanism was still not fully clear.For example,in Gd3 NiSi2,Tb3NiSi2,DyNi2 Si,Dy3 Ni8 Si,and Dy3 Ni2 Si4 alloys,the effective magnetic moments of R ions were 7.98μB,9.41μB,10.75μB,10.59μB and 10.73μB,respectively.For studying the magnetocaloric properties,the isothermal magnetization curves of Tb3NiSi2 alloy was measured by a continuous method(firstly cooling down from room temperature to 60 K in zero field,and then adding field measurement from 0-2-0 T,following zero field heating to 62 K and then adding field continuous measurement again,repeating this process to 114 K with a temperature interval of 2 K).The isothermal magnetization curves of 60 K under 2 T field showed that the low field response of Tb3NiSi2 alloy was poor,and there was no obvious characteristic horizontal line of FM saturation(PM region).The maximum magnetization was 114.9 A·mm·kg-1at 60 K in a field of 2 T and the effective magnetic moment of Tb3NiSi2 alloy molecule(12.2μB) was much lower than that of PM molecule 17.10μB.The positive slope of the Arrott plot constructed from the isothermal magnetization curves near TC confirmed the occurrence of a second-order phase transition from FM to FM in Tb3NiSi2 alloy.This result also showed no structural phase change or volume mutation during the magnetic transition process.The maximum value of the magnetic entropy change(-ΔSmax) of Tb3NiSi2 alloy calculated by Maxwell equation based on the isothermal magnetization curves near Tc was only-3.2 J·kg-1·K-1 in a field change 0-2 T.This value was almost the same as-ΔSmax of TbNi4 Si and Gd3 NiSi2 under 0-2 T field,but lower than that of GdNi4 Si alloy(6.6 J·kg-1·K-1) in R-Ni-Si alloys with FM-PM transition.In addition,the relative cooling power(RCP) of Tb3NiSi2 alloy was about 113 J·kg-1 with 35.5 K temperature half-high width(TFWHM) of maximum magnetic entropy,which was much lower than that of Gd3 NiSi2 alloy at 200 J·kg-1 under the same conditions.
Keyword:
Tb3NiSi2 alloy; magnetic transition; magnetocaloric effect;
Received: 2019-06-12
R-T-X(R=稀土元素,T=过渡族元素,X=ⅢA-IVA族元素)三元系合金中,包含局域电子间(4f-4f)的间接相互作用、巡游电子间(3d-3d)的直接相互作用、4f-3d电子间的轨道杂化和极化等相互作用,而具有半金属性质的非磁性X原子既可以调节磁性原子之间的间距(晶格常数),又可以改变电子的态密度以及合金的能带结构、磁性电子之间的交换积分作用大小,从而该系合金展现出非常有趣磁性物理现象。过渡族金属中,由于Fe,Co,Ni的3d巡游电子间的交换积分A>0,而呈铁磁性,是磁性材料中最主要的元素。对应上述体系中,R-Fe/Co–X基磁性材料通常具有较高的磁相变临界温度(主要是铁磁态-顺磁态转变的居里温度),在室温附近和高温领域展现出良好的磁性能,是稀土功能材料研究的热点。如在永磁领域,Nd2Fe14B合金被称为磁王
我们注意到具有La3Ni Ge2型正交结构的R3NiSi2合金中所有原子均占据4c位置,但Tb3Ni Si2展现出一些特殊的磁相变,除TC=135 K的铁磁态(FM)-顺磁态(PM)相变和TS=53 K的自旋重取向外,还在~130,82,66和53 K
1 实验
原材料采用购自于北京有色金属研究总院制备的高纯稀土Tb,Dy,Ho,Er(99.99%)、商业级Ni(99.9%)和Si(99.999%)按照R3Ni Si2合金正常化学计量比配样。通过充有高纯氩气的钨极非自耗电弧炉进行样品制备(反复熔炼6次)。经熔炼所得的铸锭样品密封于高真石英管内置于管式炉中进行热处理,其热处理机制工艺是:在800℃保温14 d,然后炉冷至室温。利用DX-2600射线衍射仪(XRD)对制备好的样品进行结构分析(Cu-Kα1射线,2θ=20°~60°,步进0.04,扫描时间5 s/步)。用超导量子干涉磁性测量仪(SQUID,MPMS XL,USA)对其进行磁性测量,温度范围为5~300 K,磁场范围为0~2 T。
2 结果与讨论
2.1 相与结构
图1是通过实验方法1所制备R3Ni Si2合金(R=Tb,Dy,Ho,Er)XRD图谱。可以看出虽然合金的主相均为Gd3Ni Si2型正交结构R3Ni Si2相(空间群:Pnma,No.62),但不同合金中R5Si3杂相含量却不同,其规律是从Er到Tb,R5Si3含量依次减少,Tb3Ni Si2合金样品基本为一个单相,其晶格常数为a=1.1240(8)nm,b=0.41009(8)nm,c=1.12058(1)nm,基本与文献
图1 R3Ni Si2(R=Tb,Dy,Ho,Er)合金室温XRD图谱
Fig.1 XRD patterns of R3Ni Si2(R=Tb,Dy,Ho and Er)al-loys at room temperature
表1 R3Ni Si2合金(R=Tb,Dy,Ho,Er)晶格参数 下载原图
Table 1 Crystal parameters of R3Ni Si2(R=Tb,Dy,Ho and Er)alloys
2.2 磁相变
图3(a~d)分别是不同磁场下Tb3Ni Si2合金先零场冷却然后再加场升温过程中(ZFC)和加场冷却过程中(FC)测试的磁化强度(M)随温度(T)的变化M-T曲线。由于该合金中杂相含量很低,因此本文在讨论磁性相关参数时没有考虑其他磁性离子引起的误差。在50~300 K范围内,不同磁场下的M-T曲线中均只有一个磁化强度的明显变化,即只发生了一个磁相变。FC测量模式下不同磁场的M-T曲线表明这种相变为铁磁(FM)-顺磁(PM)相变,0.01 T和1.00 T外场的d M/d T曲线最低值表明磁相变温度(Tc)=88 K(如图3(a,d)插图所示)。ZFC测量模式下的M-T曲线并不与FC测量曲线重合,尤其是0.01 T磁场下二者的差异最为明显,这种现象与Tb Ni4Si合金的M-T曲线类似
图2 R3Ni Si2合金晶格常数与合金中稀土元素关系
Fig.2 Rare earths dependence of crystal parameters of R3Ni Si2(R=Tb,Dy,Ho and Er)
表2 Tb3Ni Si2合金中原子占位表 下载原图
Table 2 Atomic occupancy in Tb3Ni Si2alloy
图4是Tb3Ni Si2合金在0.01 T和0.2 T外场下磁化率(χ)的倒数随温度变化曲线,在高温(150~300K)顺磁区域内的磁化曲线很好地遵循拟合居里-外斯曲线
图5是Tb3Ni Si2合金0~2 T磁场变化、60~114 K温度范围内的等温磁化曲线。其测量方式是零场降温至60 K,测量0~2 T-0磁场变化下的磁化强度,然后零场升温至62 K重复测量。从图中可以看出,在0~1 T外场范围内,合金的磁化强度随外场增加而快速增加,即处于最大磁化率区域;而在1~2 T范围内,磁化强度增加率较小,其基本呈线性。Tb3Ni Si2合金的低场响应性较差,在2 T外场下60 K的等温磁化曲线无明显的铁磁态技术饱和特征水平线(顺磁区域)。根据2 T磁场下60 K等温磁化曲线的最大磁化强度114.9 A·m2·kg-1,可计算出该条件下Tb3Ni Si2合金分子的有效磁矩为μeffexp/f.u.=12.2μB,这远低于图4中的顺磁分子有效磁矩≈17.10μB。这从某种程度上决定了Tb3Ni Si2合金在低场下不会有很大的最大磁熵变。另外合金的磁相变类型也是决定磁工质是否有大磁熵变的一个重要因素,若磁相变是伴随结构相变或者晶胞体积突变,即一级磁相变,则材料往往表现出大磁熵变,如具有FM-PM一级磁相变的Gd5Si2Ge2,La(Fe,Si)13,Mn Fe P0.45As0.55,Mn As1-xSbx,Mn1-xCrxCo Ge(0.04≤x≤0.25),以及具有磁场诱导AFM-FM一级磁相变的Dy Sb,Er Ru2Si2,Ho Cu Si,ε-(Mn0.83Fe0.17)3.25Ge,Ho Ni Si,RNi2Si2(R=Dy,Ho,Er)等体系。图5(b)是基于Tb3Ni Si2合金M-H曲线的Arrott图
图3 Tb3Ni Si2合金不同磁场下采用ZFC和FC方法测量的M-T曲线(插图分别为0.01 T和1 T磁场下M-T(FC)的磁化强度的温度微分曲线)
Fig.3 Temperature dependence of magnetization of Tb3Ni Si2measured by ZFC and FC methods in applied magnetic field of(a)0.01 T,(b)0.2 T,(c)0.5 T and(d)1.0 T(insets of(a)and(d)show temperature dependence of d M/d T in 0.01 T and 1.0 T field)
2.3 磁热效应
合金的磁热性能通常用等温磁熵变(ΔSM)和相对制冷量(RCP)来评价。基于等温磁化曲线,通过如下离散化麦克斯韦方程可以计算等温磁熵变。
图4 0.01 T和0.2 T磁场下Tb3Ni Si2合金磁化率导数及其高温顺磁区域居里-外斯拟合直线随温度变化曲线
Fig.4 Temperature dependence of the inverses of molar sus-ceptibility(a)of Tb3Ni Si2alloy and Curie-Weiss fitting straight lines of high temperature PM regions (b) in0.01 T and 0.2 T magnetic field
式中,M1和M2是在温度T1和T2下,随外加磁场H对应的磁化强度,上述公式实际是计算合金在T1和T2温度下两条等温磁化曲线的面积,通常将这个计算值作为温度
表3 2 T磁场下Tb3Ni Si2与其他R-Ni-Si三元合金磁相变类型、磁相变温度、最大磁熵变参数 下载原图
Table 3 Transition type and temperature TM,the maxi-mum magnetocaloric-ΔSmaxunder 2 T field for Tb3Ni Si2and various R-Ni-Si ternary alloys
bEstimated from the reference
图6 Tb3Ni Si2合金在2 T磁场下的-ΔSM-T曲线
Fig.6 Temperature dependence of magnetic entropy change(-ΔSM)of Tb3Ni Si2alloy in 2 T field
3 结论
综合而言,在50~300 K温度范围内Tb3Ni Si2合金的加场降温M-T曲线中,只发现类似于Gd3Ni Si2合金中的铁磁-顺磁二级磁相变,相变温度为Tc=88 K,而没有发现之前报道类似于AFM-FM的多重相变(~130,82,66,53 K),以及在53 K的自旋重取向外,这种差异可能源自材料的纯度或者热处理机制。由于合金的磁相变为纯二级磁相变,且该合金的低场响应较差,2 T外场下低于居里温度近30 K时合金的分子有效磁矩(μeffexp/f.u.=12.2μB)也远低于理论磁矩17.10μB,因此该合金居里温度附近的最大磁熵变值仅为3.2 J·kg-1·K-1。该值与相同条件下Gd3Ni Si2合金的最大熵变相当(3.65 J·kg-1·K-1),且其磁滞与热滞可以忽略不计。
参考文献