简介概要

基于改进PSO-SVR的连杆机构可靠度敏感性研究

来源期刊:机械设计与制造2020年第2期

论文作者:夏尔冬 王春荣 熊昌炯 刘建军

文章页码:236 - 482

关键词:连杆机构;可靠度;SVR;粒子群优化;蒙特卡洛模拟;

摘    要:为提高连杆机构的运动精度可靠性,提出一种利用多体动力学和支持向量回归(Support Vector Regression,SVR)算法构建机构的运动模型并对其进行可靠度敏感性分析的方法。通过引入粒子群优化(Particle Swarm Optimization,PSO)算法对SVR的惩罚参数和核函数参数进行寻优,提高SVR的回归预测精度。为克服PSO容易早熟和搜索精度低等缺点,对惯性权重系数和学习因子进行改进,应用改进算法与标准PSO-SVR算法并结合蒙特卡洛模拟对四杆机构的可靠度敏感性进行分析研究。通过实验对比表明,改进的算法收敛速度更快、回归预测精度更加接近于蒙特卡洛模拟,且计算速度优于蒙特卡洛模拟。

详情信息展示

基于改进PSO-SVR的连杆机构可靠度敏感性研究

夏尔冬1,王春荣1,2,熊昌炯1,刘建军1

1. 三明学院机电工程学院2. 北京工业大学机械工程及应用电子技术学院

摘 要:为提高连杆机构的运动精度可靠性,提出一种利用多体动力学和支持向量回归(Support Vector Regression,SVR)算法构建机构的运动模型并对其进行可靠度敏感性分析的方法。通过引入粒子群优化(Particle Swarm Optimization,PSO)算法对SVR的惩罚参数和核函数参数进行寻优,提高SVR的回归预测精度。为克服PSO容易早熟和搜索精度低等缺点,对惯性权重系数和学习因子进行改进,应用改进算法与标准PSO-SVR算法并结合蒙特卡洛模拟对四杆机构的可靠度敏感性进行分析研究。通过实验对比表明,改进的算法收敛速度更快、回归预测精度更加接近于蒙特卡洛模拟,且计算速度优于蒙特卡洛模拟。

关键词:连杆机构;可靠度;SVR;粒子群优化;蒙特卡洛模拟;

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号