简介概要

Precipitation Behavior of Nb in Steel under Ultra Fast Cooling Conditions

来源期刊:Journal Of Wuhan University Of Technology Materials Science Edition2015年第2期

论文作者:周晓光 WANG Meng LIU Zhenyu YANG Hao WU Di WANG Guodong

文章页码:375 - 379

摘    要:By measuring the expansion curves of a Nb bearing steel at different cooling rates by using Gleeble-3800 thermomechanical simulator, combining with metallographic analysis, different phase zones were determined. Also, precipitation behavior of Nb at different phase zones was investigated under ultra fast cooling conditions. The experimental results showed that adopting a proper deformation temperature, the ultra fast cooling process can restrain the precipitation of Nb at austenite phase zone. More quantities and smaller size precipitates of Nb can be found at the ferrite or bainite phase zone by controlling the ultra fast cooling ending temperature. With the increase of holding time at austenite, ferrite and bainite phase zones respectively, the volume fraction of precipitation, density, and average size of precipitates will increase obviously. With the decrease of early ultra fast cooling ending temperature, the density of Nb precipitates first increase(at ferrite phase zone) and then decrease(at bainite phase zone), the volume fraction of Nb precipitation decreases and precipitates can be refined. The optimal early ultra fast cooling ending temperature is located at ferrite phase zone. The combination of high rolling temperature with early ultra fast cooling technology opens the way for new cooling schedules and makes the production of high strength steels easier and cheaper by making full use of Nb precipitation strengthening effect.

详情信息展示

Precipitation Behavior of Nb in Steel under Ultra Fast Cooling Conditions

周晓光,WANG Meng,LIU Zhenyu,YANG Hao,WU Di,WANG Guodong

The State Key Laboratory of Rolling Technology and Automation, Northeastern University

摘 要:By measuring the expansion curves of a Nb bearing steel at different cooling rates by using Gleeble-3800 thermomechanical simulator, combining with metallographic analysis, different phase zones were determined. Also, precipitation behavior of Nb at different phase zones was investigated under ultra fast cooling conditions. The experimental results showed that adopting a proper deformation temperature, the ultra fast cooling process can restrain the precipitation of Nb at austenite phase zone. More quantities and smaller size precipitates of Nb can be found at the ferrite or bainite phase zone by controlling the ultra fast cooling ending temperature. With the increase of holding time at austenite, ferrite and bainite phase zones respectively, the volume fraction of precipitation, density, and average size of precipitates will increase obviously. With the decrease of early ultra fast cooling ending temperature, the density of Nb precipitates first increase(at ferrite phase zone) and then decrease(at bainite phase zone), the volume fraction of Nb precipitation decreases and precipitates can be refined. The optimal early ultra fast cooling ending temperature is located at ferrite phase zone. The combination of high rolling temperature with early ultra fast cooling technology opens the way for new cooling schedules and makes the production of high strength steels easier and cheaper by making full use of Nb precipitation strengthening effect.

关键词:

<上一页 1 下一页 >

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号