简介概要

Combustion synthesis and stability of nanocrystalline La2O3 via ethanolamine-nitrate process

来源期刊:JOURNAL OF RARE EARTHS2012年第1期

论文作者:龙俞霖 杨骏 李小慈 黄微雅 唐渝 张渊明

文章页码:48 - 52

摘    要:Pure nanocrystalline La2O3 powders were successfully prepared by the combustion method.The effect of ethanolamine-to-nitrate ratio on phase composition and crystallite size of the combustion products was systematically investigated.Pure hexagonal La2O3 powders were almost formed in stoichiometric reaction(ψ=1.15),while metallic La phase was obtained in fuel-rich conditions(ψ≥3.0).The as-synthesized hexagonal La2O3 was found to be chemically unstable in ambient air since a complete transformation to hexagonal La(OH)3 was detected after 24 h exposure to air.The resulting hexagonal La(OH)3 showed an excellent ability to remove water pollutant and could nearly remove 100% of the Congo red at room temperature with a removal capacity of 143.5 mg Congo red/g.The phosphate adsorption data on hexagonal La(OH)3 agreed well with the Langmuir model with the estimated maximum adsorption capacity of 57.8 mg/g.

详情信息展示

Combustion synthesis and stability of nanocrystalline La2O3 via ethanolamine-nitrate process

龙俞霖,杨骏,李小慈,黄微雅,唐渝,张渊明

Department of Chemistry,Jinan University

摘 要:Pure nanocrystalline La2O3 powders were successfully prepared by the combustion method.The effect of ethanolamine-to-nitrate ratio on phase composition and crystallite size of the combustion products was systematically investigated.Pure hexagonal La2O3 powders were almost formed in stoichiometric reaction(ψ=1.15),while metallic La phase was obtained in fuel-rich conditions(ψ≥3.0).The as-synthesized hexagonal La2O3 was found to be chemically unstable in ambient air since a complete transformation to hexagonal La(OH)3 was detected after 24 h exposure to air.The resulting hexagonal La(OH)3 showed an excellent ability to remove water pollutant and could nearly remove 100% of the Congo red at room temperature with a removal capacity of 143.5 mg Congo red/g.The phosphate adsorption data on hexagonal La(OH)3 agreed well with the Langmuir model with the estimated maximum adsorption capacity of 57.8 mg/g.

关键词:

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号