简介概要

基于神经网络的转炉冶炼终点锰、磷静态预测算法

来源期刊:中国锰业2019年第2期

论文作者:张群威 陈桂华

文章页码:85 - 87

关键词:基于神经网络;转炉冶炼;静态预测;

摘    要:在国内重工业领域中,很多钢铁企业所采用的转炉大部分为最小型的转炉,由于容量有限无法对转炉冶炼结束时的锰、磷进行静态预测,进行影响了冶炼的精度。然而,传统算法用于实现锰和磷的冶炼终点。因此,充分利用最近开发的人工神经网络技术,基于Visual Basic编程语言,神经网络模型用于预测转炉冶炼结束时的锰和磷状态。针对半钢炼钢分开建立锰、磷含量、温度预测模型,确定输入层参数有37个,中间隐藏层参数有30个,输出层参数有两个3层BP神经网络。模型在30 000炉样本的基础上做数据训练,对权值、阈值进行修正,并保存100炉未训练过的学习样本作为模型网络训练依据,对转炉冶炼进行在线训练,通过训练的模型可以很好的适应转炉冶炼多变的生产条件。

详情信息展示

基于神经网络的转炉冶炼终点锰、磷静态预测算法

张群威,陈桂华

漯河职业技术学院

摘 要:在国内重工业领域中,很多钢铁企业所采用的转炉大部分为最小型的转炉,由于容量有限无法对转炉冶炼结束时的锰、磷进行静态预测,进行影响了冶炼的精度。然而,传统算法用于实现锰和磷的冶炼终点。因此,充分利用最近开发的人工神经网络技术,基于Visual Basic编程语言,神经网络模型用于预测转炉冶炼结束时的锰和磷状态。针对半钢炼钢分开建立锰、磷含量、温度预测模型,确定输入层参数有37个,中间隐藏层参数有30个,输出层参数有两个3层BP神经网络。模型在30 000炉样本的基础上做数据训练,对权值、阈值进行修正,并保存100炉未训练过的学习样本作为模型网络训练依据,对转炉冶炼进行在线训练,通过训练的模型可以很好的适应转炉冶炼多变的生产条件。

关键词:基于神经网络;转炉冶炼;静态预测;

<上一页 1 下一页 >

相关论文

  • 暂无!

相关知识点

  • 暂无!

有色金属在线官网  |   会议  |   在线投稿  |   购买纸书  |   科技图书馆

中南大学出版社 技术支持 版权声明   电话:0731-88830515 88830516   传真:0731-88710482   Email:administrator@cnnmol.com

互联网出版许可证:(署)网出证(京)字第342号   京ICP备17050991号-6      京公网安备11010802042557号